489 research outputs found

    Neural Basis and Motor Imagery Intervention Methodology Based on Neuroimaging Studies in Children With Developmental Coordination Disorders: A Review.

    Get PDF
    Although the neural bases of the brain associated with movement disorders in children with developmental coordination disorder (DCD) are becoming clearer, the information is not sufficient because of the lack of extensive brain function research. Therefore, it is controversial about effective intervention methods focusing on brain function. One of the rehabilitation techniques for movement disorders involves intervention using motor imagery (MI). MI is often used for movement disorders, but most studies involve adults and healthy children, and the MI method for children with DCD has not been studied in detail. Therefore, a review was conducted to clarify the neuroscientific basis of the methodology of intervention using MI for children with DCD. The neuroimaging review included 20 magnetic resonance imaging studies, and the neurorehabilitation review included four MI intervention studies. In addition to previously reported neural bases, our results indicate decreased activity of the bilateral thalamus, decreased connectivity of the sensory-motor cortex and the left posterior middle temporal gyrus, bilateral posterior cingulate cortex, precuneus, cerebellum, and basal ganglia, loss of connectivity superiority in the abovementioned areas. Furthermore, reduction of gray matter volume in the right superior frontal gyrus and middle frontal gyrus, lower fractional anisotropy, and axial diffusivity in regions of white matter pathways were found in DCD. As a result of the review, children with DCD had less activation of the left brain, especially those with mirror neurons system (MNS) and sensory integration functions. On the contrary, the area important for the visual space processing of the right brain was activated. Regarding of characteristic of the MI methods was that children observed a video related to motor skills before the intervention. Also, they performed visual-motor tasks before MI training sessions. Adding action observation during MI activates the MNS, and performing visual-motor tasks activates the basal ganglia. These methods may improve the deactivated brain regions of children with DCD and may be useful as conditioning before starting training. Furthermore, we propose a process for sharing the contents of MI with the therapist in language and determining exercise strategies

    On-Orbit Demonstrations of Robust Autonomous Operations on Cubesat

    Get PDF
    As we accumulate experiences of satellite developments, we clearly recognize the importance of successful operations and difficulty to achieve them. There are many anomalous events in orbit especially for small satellites. It is costly or impossible to consider all anomalies in advance. The autonomous operation functions, we have developed, can operate the satellite without operators and achieve operation intents. The functions have the satellite behavior (state) models and the given operation intents. They generate the on-board operation procedures from the behavior models and execute them. Even if the status may not transit as expected due to anomalies, they can re-recognize the new status, generate the operation procedures again, and achieve the operation intents robustly. We have demonstrated the autonomous operation functions on a 3U CubeSat called TRICOM-1R that was launched by the newly developed and dedicated small satellite launcher SS-520 on 3rd Feb. 2018. The autonomous functions worked correctly and tried turning on the cameras without any predetermined operation procedures during the very first cycle of the orbit. The demonstration of them has successfully completed. We have several CubeSats and small satellites now in development and we will implement the upgraded version of the autonomous functions on them

    Platanoid leaves from Cenomanian to Turonian Mikasa Formation, northern Japan and their mode of occurrence

    Get PDF
    金沢大学理工研究域自然システム学系Ettingshausenia cuneifolia is reported from the Cenomanian to Turonian Mikasa Formation of central Hokkaido. These leaves occur exclusively in carbonaceous mudstone deposited in either lagoon or marsh. Based on their mode of occurrence, these remnants may have been trapped in the sediments without long prior transport (parautochthonous). © by the Palaeontological Society of Japan

    Development of Safety Measures of Bicycle Trafflc by Observation wffh Deep-Leamlng, Drive Recorder Data, Probe Blcycle wlth LIDAR, and Connected Simulators

    Get PDF
    This research outlines the development of evaluating safety measures for bicycle traffic using state-of-the-art technology, which was started since 2020 as a four-year project. The project is funded by the Commission on Advanced Road Technology in the Ministry of Land, Infrastructure, Transport and Tourism(MLIT). While Japan has a high bicycle modal share of 12% (2010), bicycle-related fatalities are relatively high among other countries in the IRTAD database (2019). Under these circumstances, since 2007, various measures for bicycle traffic measures have been implemented to improve the safe bicycle traffic environment, including the revision of the Road Traffic Act and the formulation of a national plan to promote bicycle use. However, serious accidents involving bicycles are remained in some specific cases. According to the government's traffic accident analysis results (2019), right-hook crash at signalized intersections are one of the most serious types of collision involving bicycles, along with accidents at unsignalized intersections involving vehicles turning left, rear-end collisions, and single vehicle accidents due to off-road deviation. In particular, proactive safety measures are required at signalized intersections along arterial roads, where electric personal mobility vehicles traveling at speeds of up to 20 km/h are expected to share with bicycles in the future. In order to evaluate safety measures for bicycle-vehicle crashes, this project set the following goals. 1) Identify factors influencing near-miss incidents and collisions through analysis of drive recorder data and accident statistical data. 2) Detailed analysis of traffic conditions from the cyclist's perspective using a probe bicycle equipped with a LiDAR sensor. 3) Development of an experimental environment using a connected simulator for evaluation of cooperative driving behavior. 4) Clarification of experimental conditions to evaluate different scenarios and conditions with and without intervention. 5) Proposal of effective interventions to improve crash cases based on experiments

    Pneumocephalus Associated with Cerebrospinal Fluid Fistula as a Complication of Spinal Surgery: A Case Report

    Get PDF
    Pneumocephalus is a well-known condition following head trauma, but is rare as an injury or as a result of surgery of the spine. We present a 76-year-old patient with a rare case of pneumocephalus associated with a cerebrospinal fluid fistula as a complication of surgical treatment for cervical myelopathy. Although cerebrospinal fluid leakage was noted and the injured dura was carefully sutured at operation, tension pneumocephalus occurred. The resultant pneumocephalus was diagnosed based on neurogenic symptoms including sudden convulsion, head radiograph, and computed tomography scan. The benign course of the pneumocephalus postdiagnosis did not require secondary operation
    corecore