76 research outputs found

    Cellular Cytoskeleton Dynamics Modulates Non-Viral Gene Delivery through RhoGTPases

    Get PDF
    Although it is well accepted that the constituents of the cellular microenvironment modulate a myriad of cellular processes, including cell morphology, cytoskeletal dynamics and uptake pathways, the underlying mechanism of how these pathways influence non-viral gene transfer have not been studied. Transgene expression is increased on fibronectin (Fn) coated surfaces as a consequence of increased proliferation, cell spreading and active engagement of clathrin endocytosis pathway. RhoGTPases mediate the crosstalk between the cell and Fn, and regulate cellular processes involving filamentous actin, in-response to cellular interaction with Fn. Here the role of RhoGTPases specifically Rho, Rac and Cdc42 in modulation of non-viral gene transfer in mouse mesenchymal stem (mMSCs) plated in a fibronectin microenvironment was studied. More than 90% decrease in transgene expression was observed after inactivation of RhoGTPases using difficile toxin B (TcdB) and C3 transferase. Expression of dominant negative RhoA (RhoAT19N), Rac1(Rac1T17N) and Cdc42 (Cdc42T17N) also significantly reduced polyplex uptake and transgene expression. Interactions of cells with Fn lead to activation of RhoGTPases. However, further activation of RhoA, Rac1 and Cdc42 by expression of constitutively active genes (RhoAQ63L, Rac1Q61L and Cdc42Q61L) did not further enhance transgene expression in mMSCs, when plated on Fn. In contrast, activation of RhoA, Rac1 and Cdc42 by expression of constitutively active genes for cells plated on collagen I, which by itself did not increase RhoGTPase activation, resulted in enhanced transgene expression. Our study shows that RhoGTPases regulate internalization and effective intracellular processing of polyplexes that results in efficient gene transfer

    The DOCK Protein Sponge Binds to ELMO and Functions in Drosophila Embryonic CNS Development

    Get PDF
    Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegans Ced-5, human DOCK180, Drosophila Myoblast city, or Mbc) family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS) development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development

    Caenorhabditis elegans Myotubularin MTM-1 Negatively Regulates the Engulfment of Apoptotic Cells

    Get PDF
    During programmed cell death, apoptotic cells are recognized and rapidly engulfed by phagocytes. Although a number of genes have been identified that promote cell corpse engulfment, it is not well understood how phagocytosis of apoptotic cells is negatively regulated. Here we have identified Caenorhabditis elegans myotubularin MTM-1 as a negative regulator of cell corpse engulfment. Myotubularins (MTMs) constitute a large, highly conserved family of lipid phosphatases. MTM gene mutations are associated with various human diseases, but the cellular functions of MTM proteins are not clearly defined. We found that inactivation of MTM-1 caused significant reduction in cell corpses in strong loss-of-function mutants of ced-1, ced-6, ced-7, and ced-2, but not in animals deficient in the ced-5, ced-12, or ced-10 genes. In contrast, overexpression of MTM-1 resulted in accumulation of cell corpses. This effect is dependent on the lipid phosphatase activity of MTM-1. We show that loss of mtm-1 function accelerates the clearance of cell corpses by promoting their internalization. Importantly, the reduction of cell corpses caused by mtm-1 RNAi not only requires the activities of CED-5, CED-12, and CED-10, but also needs the functions of the phosphatidylinositol 3-kinases (PI3Ks) VPS-34 and PIKI-1. We found that MTM-1 localizes to the plasma membrane in several known engulfing cell types and may modulate the level of phosphatidylinositol 3-phosphate (PtdIns(3)P) in vivo. We propose that MTM-1 negatively regulates cell corpse engulfment through the CED-5/CED-12/CED-10 module by dephosphorylating PtdIns(3)P on the plasma membrane

    Crk and CrkL adaptor proteins: networks for physiological and pathological signaling

    Get PDF
    The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses

    Differential Effects of p38, MAPK, PI3K or Rho Kinase Inhibitors on Bacterial Phagocytosis and Efferocytosis by Macrophages in COPD

    Get PDF
    Pulmonary inflammation and bacterial colonization are central to the pathogenesis of chronic obstructive pulmonary disease (COPD). Defects in macrophage phagocytosis of both bacteria and apoptotic cells contribute to the COPD phenotype. Small molecule inhibitors with anti-inflammatory activity against p38 mitogen activated protein kinases (MAPKs), phosphatidyl-inositol-3 kinase (PI3K) and Rho kinase (ROCK) are being investigated as novel therapeutics in COPD. Concerns exist, however, about off-target effects. We investigated the effect of p38 MAPK inhibitors (VX745 and SCIO469), specific inhibitors of PI3K α (NVS-P13K-2), δ (NVS-P13K-3) or γ (NVS-P13K-5) and a ROCK inhibitor PF4950834 on macrophage phagocytosis, early intracellular killing of bacteria and efferocytosis of apoptotic neutrophils. Alveolar macrophages (AM) obtained from broncho-alveolar lavage (BAL) or monocyte-derived macrophages (MDM) from COPD patients (GOLD stage II/III) enrolled from a well characterized clinical cohort (MRC COPD-MAP consortium) or from healthy ex-smoker controls were studied. Both COPD AM and MDM exhibited lower levels of bacterial phagocytosis (using Streptococcus pneumoniae and non-typeable Haemophilus influenzae) and efferocytosis than healthy controls. None of the inhibitors altered bacterial internalization or early intracellular bacterial killing in AM or MDM. Conversely PF4950834, but not other inhibitors, enhanced efferocytosis in COPD AM and MDM. These results suggest none of these inhibitors are likely to exacerbate phagocytosis-related defects in COPD, while confirming ROCK inhibitors can enhance efferocytosis in COPD

    Distinct roles for intracellular and extracellular lipids in hepatitis C virus infection

    Full text link
    Hepatitis C is a chronic liver disease that contributes to progressive metabolic dysfunction. Infection of hepatocytes by hepatitis C virus (HCV) results in reprogramming of hepatic and serum lipids. However, the specific contribution of these distinct pools of lipids to HCV infection remains ill defined. In this study, we investigated the role of hepatic lipogenesis in HCV infection by targeting the rate-limiting step in this pathway, which is catalyzed by the acetyl-CoA carboxylase (ACC) enzymes. Using two structurally unrelated ACC inhibitors, we determined that blockade of lipogenesis resulted in reduced viral replication, assembly, and release. Supplementing exogenous lipids to cells treated with ACC inhibitors rescued HCV assembly with no effect on viral replication and release. Intriguingly, loss of viral RNA was not recapitulated at the protein level and addition of 2-bromopalmitate, a competitive inhibitor of protein palmitoylation, mirrored the effects of ACC inhibitors on reduced viral RNA without a concurrent loss in protein expression. These correlative results suggest that newly synthesized lipids may have a role in protein palmitoylation during HCV infection

    Identification of two signaling submodules within the CrkII/ELMO/Dock180 pathway regulating engulfment of apoptotic cells.

    Full text link
    Removal of apoptotic cells is a dynamic process coordinated by ligands on apoptotic cells, and receptors and other signaling proteins on the phagocyte. One of the fundamental challenges is to understand how different phagocyte proteins form specific and functional complexes to orchestrate the recognition/removal of apoptotic cells. One evolutionarily conserved pathway involves the proteins cell death abnormal (CED)-2/chicken tumor virus no. 10 (CT10) regulator of kinase (Crk)II, CED-5/180 kDa protein downstream of chicken tumor virus no. 10 (Crk) (Dock180), CED-12/engulfment and migration (ELMO) and MIG-2/RhoG, leading to activation of the small GTPase CED-10/Rac and cytoskeletal remodeling to promote corpse uptake. Although the role of ELMO : Dock180 in regulating Rac activation has been well defined, the function of CED-2/CrkII in this complex is less well understood. Here, using functional studies in cell lines, we observe that a direct interaction between CrkII and Dock180 is not required for efficient removal of apoptotic cells. Similarly, mutants of CED-5 lacking the CED-2 interaction motifs could rescue engulfment and migration defects in CED-5 deficient worms. Mutants of CrkII and Dock180 that could not biochemically interact could colocalize in membrane ruffles. Finally, we identify MIG-2/RhoG (which functions upstream of Dock180 : ELMO) as a possible point of crosstalk between these two signaling modules. Taken together, these data suggest that Dock180/ELMO and CrkII act as two evolutionarily conserved signaling submodules that coordinately regulate engulfment
    • …
    corecore