2,128 research outputs found

    MOND and IMF variations in early-type galaxies from ATLAS3D

    Get PDF
    MOdified Newtonian dynamics (MOND) represents a phenomenological alternative to dark matter (DM) for the missing mass problem in galaxies and clusters of galaxies. We analyze the central regions of a local sample of 220\sim 220 early-type galaxies from the ATLAS3D\rm ATLAS^{3D} survey, to see if the data can be reproduced without recourse to DM. We estimate dynamical masses in the MOND context through Jeans analysis, and compare to ATLAS3D\rm ATLAS^{3D} stellar masses from stellar population synthesis. We find that the observed stellar mass--velocity dispersion relation is steeper than expected assuming MOND with a fixed stellar initial mass function (IMF) and a standard value for the acceleration parameter a0a_{\rm 0}. Turning from the space of observables to model space, a) fixing the IMF, a universal value for a0a_{\rm 0} cannot be fitted, while, b) fixing a0a_{\rm 0} and leaving the IMF free to vary, we find that it is "lighter" (Chabrier-like) for low-dispersion galaxies, and "heavier" (Salpeter-like) for high dispersions. This MOND-based trend matches inferences from Newtonian dynamics with DM, and from detailed analysis of spectral absorption lines, adding to the converging lines of evidence for a systematically-varying IMF.Comment: 6 pages, 3 figures, accepted for publication on MNRAS Letters, typos corrected and further references adde

    Evolution of central dark matter of early-type galaxies up to z ~ 0.8

    Full text link
    We investigate the evolution of dark and luminous matter in the central regions of early-type galaxies (ETGs) up to z ~ 0.8. We use a spectroscopically selected sample of 154 cluster and field galaxies from the EDisCS survey, covering a wide range in redshifts (z ~ 0.4-0.8), stellar masses (logM/M\log M_{\star}/ M_{\odot} ~ 10.5-11.5 dex) and velocity dispersions (σ\sigma_{\star} ~ 100-300 \, km/s). We obtain central dark matter (DM) fractions by determining the dynamical masses from Jeans modelling of galaxy aperture velocity dispersions and the MM_{\star} from galaxy colours, and compare the results with local samples. We discuss how the correlations of central DM with galaxy size (i.e. the effective radius, ReR_{\rm e}), MM_{\star} and σ\sigma_{\star} evolve as a function of redshift, finding clear indications that local galaxies are, on average, more DM dominated than their counterparts at larger redshift. This DM fraction evolution with zz can be only partially interpreted as a consequence of the size-redshift evolution. We discuss our results within galaxy formation scenarios, and conclude that the growth in size and DM content which we measure within the last 7 Gyr is incompatible with passive evolution, while it is well reproduced in the multiple minor merger scenario. We also discuss the impact of the IMF on our DM inferences and argue that this can be non-universal with the lookback time. In particular, we find the Salpeter IMF can be better accommodated by low redshift systems, while producing stellar masses at high-zz which are unphysically larger than the estimated dynamical masses (particularly for lower-σ\sigma_{\star} systems).Comment: 14 pages, 6 figures, 3 tables, MNRAS in pres

    Nonparametric Regression Analysis of Cyclist Waiting Times across Three Behavioral Typologies

    Get PDF
    This paper seeks to predict the average waiting time, defined as the time spent moving at 1 ms−1 or less, of urban bicyclists during rush hours while performing different maneuvers at intersections. Individual predictive models are built for the three cyclist typologies previously identified on a large database of GPS traces recorded in the city of Bologna, Italy. Individual models are built for the three cyclist typologies and bootstrapping has confirmed the validity and robustness of the results. The results allow the integration of waiting times in route choice models for cyclists, thus improving the rational bases by which cyclists makes their decisions. Moreover, the modeling allows transportation engineers to understand how different cyclist typologies perceive different variables that affect their waiting times. Future work should focus on testing the model transferability to other case studies

    Finding Strong Gravitational Lenses in the Kilo Degree Survey with Convolutional Neural Networks

    Get PDF
    The volume of data that will be produced by new-generation surveys requires automatic classification methods to select and analyze sources. Indeed, this is the case for the search for strong gravitational lenses, where the population of the detectable lensed sources is only a very small fraction of the full source population. We apply for the first time a morphological classification method based on a Convolutional Neural Network (CNN) for recognizing strong gravitational lenses in 255255 square degrees of the Kilo Degree Survey (KiDS), one of the current-generation optical wide surveys. The CNN is currently optimized to recognize lenses with Einstein radii 1.4\gtrsim 1.4 arcsec, about twice the rr-band seeing in KiDS. In a sample of 2178921789 colour-magnitude selected Luminous Red Galaxies (LRG), of which three are known lenses, the CNN retrieves 761 strong-lens candidates and correctly classifies two out of three of the known lenses. The misclassified lens has an Einstein radius below the range on which the algorithm is trained. We down-select the most reliable 56 candidates by a joint visual inspection. This final sample is presented and discussed. A conservative estimate based on our results shows that with our proposed method it should be possible to find 100\sim100 massive LRG-galaxy lenses at z\lsim 0.4 in KiDS when completed. In the most optimistic scenario this number can grow considerably (to maximally \sim2400 lenses), when widening the colour-magnitude selection and training the CNN to recognize smaller image-separation lens systems.Comment: 24 pages, 17 figures. Published in MNRA

    Stellar population gradients from cosmological simulations: dependence on mass and environment in local galaxies

    Full text link
    The age and metallicity gradients for a sample of group and cluster galaxies from N-body+hydrodynamical simulation are analyzed in terms of galaxy stellar mass. Dwarf galaxies show null age gradient with a tail of high and positive values for systems in groups and cluster outskirts. Massive systems have generally zero age gradients which turn to positive for the most massive ones. Metallicity gradients are distributed around zero in dwarf galaxies and become more negative with mass; massive galaxies have steeper negative metallicity gradients, but the trend flatten with mass. In particular, fossil groups are characterized by a tighter distribution of both age and metallicity gradients. We find a good agreement with both local observations and independent simulations. The results are also discussed in terms of the central age and metallicity, as well as the total colour, specific star formation and velocity dispersion.Comment: 9 pages, 5 figures, accepted for publication on MNRA

    Constraining decaying dark energy density models with the CMB temperature-redshift relation

    Full text link
    We discuss the thermodynamic and dynamical properties of a variable dark energy model with density scaling as ρx(1+z)m\rho_x \propto (1+z)^{m}, z being the redshift. These models lead to the creation/disruption of matter and radiation, which affect the cosmic evolution of both matter and radiation components in the Universe. In particular, we have studied the temperature-redshift relation of radiation, which has been constrained using a recent collection of cosmic microwave background (CMB) temperature measurements up to z3z \sim 3. We find that, within the uncertainties, the model is indistinguishable from a cosmological constant which does not exchange any particles with other components. Future observations, in particular measurements of CMB temperature at large redshift, will allow to give firmer bounds on the effective equation of state parameter weffw_{eff} for such types of dark energy models.Comment: 9 pages, 1 figure, to appear in the Proceedings of the 3rd Italian-Pakistani Workshop on Relativistic Astrophysics, Lecce 20-22 June 2011, published in Journal of Physics: Conference Series (JPCS

    Stellar mass-to-light ratio gradients in galaxies: correlations with mass

    Get PDF
    We analyse the stellar mass-to-light ratio (M/L) gradients in a large sample of local galaxies taken from the Sloan Digital Sky Survey, spanning a wide range of stellar masses and morphological types. As suggested by the well-known relationship between M/L values and colours, we show that M/L gradients are strongly correlated with colour gradients, which we trace to the effects of age variations. Stellar M/L gradients generally follow patterns of variation with stellar mass and galaxy type that were previously found for colour and metallicity gradients. In late-type galaxies M/L gradients are negative, steepening with increasing mass. In early-type galaxies M/L gradients are shallower, while presenting a twofold trend: they decrease with mass up to a characteristic mass of and increase at larger masses. We compare our findings with other analyses and discuss some implications for galaxy formation and for dark matter estimate

    Nuclear constraints on non-Newtonian gravity at femtometer scale

    Full text link
    Effects of the non-Newtonian gravity on properties of finite nuclei are studied by consistently incorporating both the direct and exchange contribution of the Yukawa potential in the Hartree-Fock approach using a well-tested Skyrme force for the strong interaction. It is shown for the first time that the strength of the Yukawa term in the non-Newtonian gravity is limited to log(α)<1.75/[λ(fm)]0.54+33.6\log(|\alpha|)<1.75/[\lambda(\rm fm)]^{0.54} + 33.6 within the length scale of λ=110\lambda=1-10 fm in order for the calculated properties of finite nuclei not to be in conflict with accurate experimental data available.Comment: Additional discussions and references added; related Lab Talk is available via http://iopscience.iop.org/0954-3899/labtalk-article/5229

    SPIDER - VI. The Central Dark Matter Content of Luminous Early-Type Galaxies: Benchmark Correlations with Mass, Structural Parameters and Environment

    Get PDF
    We analyze the central dark-matter (DM) content of \sim 4,500 massive (M* \gsim 10^{10} Msun), low-redshift (z<0.1), early-type galaxies (ETGs), with high-quality ugrizYJHK photometry and optical spectroscopy from SDSS and UKIDSS. We estimate the "central" fraction of DM within the K-band effective radius, \Re, using spherically symmetric isotropic galaxy models. We discuss the role of systematics. The main results of the present work are the following: (1) DM fractions increase systematically with both structural parameters and mass proxies, as in previous studies, and decrease with central stellar density. 2) All correlations involving DM fractions are caused by two fundamental ones with galaxy effective radius and central velocity dispersion. These correlations are independent of each other, so that ETGs populate a central-DM plane (DMP), i.e. a correlation among fraction of total-to-stellar mass, effective radius, and velocity dispersion, whose scatter along the total-to-stellar mass axis amounts to \sim 0.15 dex. (3) In general, under the assumption of an isothermal or a constant M/L profile for the total mass distribution, a Chabrier IMF is favoured with respect to a bottom-heavier Salpeter IMF, as the latter produces negative (i.e. unphysical) DM fractions for more than 50% of the galaxies in our sample. For a Chabrier IMF, the DM estimates agree with \LambdaCDM toy-galaxy models based on contracted DM-halo density profiles. We also find agreement with predictions from hydrodynamical simulations. (4) The central DM content of ETGs does not depend significantly on the environment where galaxies reside, with group and field ETGs having similar DM trends. (Abridged)Comment: 20 pages, 13 figures, 2 tables, accepted for publication on MNRAS, version including revisions after the referee's report and feedbacks from communit

    Nonequilibrium Green's function theory for transport and gain properties of quantum cascade structures

    Full text link
    The transport and gain properties of quantum cascade (QC) structures are investigated using a nonequilibrium Green's function (NGF) theory which includes quantum effects beyond a Boltzmann transport description. In the NGF theory, we include interface roughness, impurity, and electron-phonon scattering processes within a self-consistent Born approximation, and electron-electron scattering in a mean-field approximation. With this theory we obtain a description of the nonequilibrium stationary state of QC structures under an applied bias, and hence we determine transport properties, such as the current-voltage characteristic of these structures. We define two contributions to the current, one contribution driven by the scattering-free part of the Hamiltonian, and the other driven by the scattering Hamiltonian. We find that the dominant part of the current in these structures, in contrast to simple superlattice structures, is governed mainly by the scattering Hamiltonian. In addition, by considering the linear response of the stationary state of the structure to an applied optical field, we determine the linear susceptibility, and hence the gain or absorption spectra of the structure. A comparison of the spectra obtained from the more rigorous NGF theory with simpler models shows that the spectra tend to be offset to higher values in the simpler theories.Comment: 44 pages, 16 figures, appearing in Physical Review B Dec 200
    corecore