92 research outputs found
Recommended from our members
Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoSâ).
We fabricate a few-layer molybdenum disulfide (MoSâ) polymer composite saturable absorber by liquid-phase exfoliation, and use this to passively Q-switch an ytterbium-doped fiber laser, tunable from 1030 to 1070 nm. Self-starting Q-switching generates 2.88 ÎŒs pulses at 74 kHz repetition rate, with over 100 nJ pulse energy. We propose a mechanism, based on edge states within the bandgap, responsible for the wideband nonlinear optical absorption exhibited by our few-layer MoSâ sample, despite operating at photon energies lower than the material bandgap.EJRK acknowledges support from the Royal Academy of Engineering (RAEng), through a
RAEng Fellowship, RCTH from EPSRC (EP/G037221/1), GH from a CSC Cambridge International
Scholarship, and TH from the RAEng (Graphlex). The authors also acknowledge
ThorLabs for access to their technical drawings.This is the accepted manuscript. The final version is available at http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-25-31113. © 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited
Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser
Abstract
We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-locked fiber laser. Stable, picosecond pulses, tunable from 1,535 nm to 1,565 nm, are generated, corresponding to photon energies below the MoS2 material bandgap. These results contribute to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.MZ wishes to acknowledge funding from the EPSRC (EP/K03705), RCTH from the EPSRC (EP/G037221/1), GH from a CSC Cambridge International Scholarship, EJRK from the Royal Academy of Engineering (RAEng), through a RAEng Fellowship and TH from the RAEng (Graphlex).This is the final version. It was first published by Springer at http://link.springer.com/article/10.1007%2Fs12274-014-0637-
Tm-doped fiber laser mode-locked by graphene-polymer composite.
We demonstrate mode-locking of a thulium-doped fiber laser operating at 1.94 ÎŒm, using a graphene-polymer based saturable absorber. The laser outputs 3.6 ps pulses, with ~0.4 nJ energy and an amplitude fluctuation ~0.5%, at 6.46 MHz. This is a simple, low-cost, stable and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics
Double-wall carbon nanotubes for wide-band, ultrafast pulse generation.
This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/nn500767b.We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 ÎŒm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT-polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics.We acknowledge funding from EPSRC GR/
S97613/01, EP/E500935/1, the ERC Grant NANOPOTS, a Royal
Society Brian Mercer Award for Innovation. A.C.F. is a Royal
Society Wolfson Research Merit Award holder. V.N. wishes to
acknowledge support from the European Research Council (ERC
Starting Grant 2DNanoCaps) and Science Foundation Ireland,
P.T. from National Natural Science Foundation of China, Grants
No. 11225421, F.B. from the Newton International Fellowship,
Z.S. from Teknologiateollisuus TT-100, the European Union's
Seventh Framework Programme (No. 631610), and Aalto University, T.H. from NSFC (Grant No. 61150110487), and the Royal
Academy of Engineering (Graphlex)
Neoadjuvant endocrine therapy in primary breast cancer: indications and use as a research tool
Neoadjuvant endocrine therapy has been increasingly employed in clinical practice to improve surgical options for postmenopausal women with bulky hormone receptor-positive breast cancer. Recent studies indicate that tumour response in this setting may predict long-term outcome of patients on adjuvant endocrine therapy, which argues for its broader application in treating hormone receptor-positive disease. From the research perspective, neoadjuvant endocrine therapy provides a unique opportunity for studies of endocrine responsiveness and the development of novel therapeutic agents
Primary Therapy in Breast Cancer: What Have We Learned from Landmark Trials?:
Primary anticancer therapy is currently accepted as a therapeutic option for patients with early-stage breast cancer. Its objectives are to increase the chance of achieving a conservative surgery and, similar to adjuvant chemotherapy, to reduce the risk of distant recurrence. The prognostic significance of obtaining a pathological complete response has been evaluated in several randomized clinical trials and meta-analyses. Growing evidence suggests that pathological complete response may act as a valid predictor of overall survival. Of note, a significant association between pathological complete response and outcome has especially been observed in patients with HER2-positive and triple-negative (hormonal receptors negative and HER2-negative) breast cancer. This review focuses on recent trials of neoadjuvant treatment with specific attention to HER2-negative disease
Recommended from our members
Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder.
Bipolar disorder (BD) is characterized by emotional dysregulation and cognitive deficits associated with abnormal connectivity between subcortical-primarily emotional processing regions-and prefrontal regulatory areas. Given the significant contribution of genetic factors to BD, studies in unaffected first-degree relatives can identify neural mechanisms of genetic risk but also resilience, thus paving the way for preventive interventions. Dynamic causal modeling (DCM) and random-effects Bayesian model selection were used to define and assess connectomic phenotypes linked to facial affect processing and working memory in a demographically matched sample of first-degree relatives carefully selected for resilience (n=25), euthymic patients with BD (n=41) and unrelated healthy controls (n=46). During facial affect processing, patients and relatives showed similarly increased frontolimbic connectivity; resilient relatives, however, evidenced additional adaptive hyperconnectivity within the ventral visual stream. During working memory processing, patients displayed widespread hypoconnectivity within the corresponding network. In contrast, working memory network connectivity in resilient relatives was comparable to that of controls. Our results indicate that frontolimbic dysfunction during affect processing could represent a marker of genetic risk to BD, and diffuse hypoconnectivity within the working memory network a marker of disease expression. The association of hyperconnectivity within the affect-processing network with resilience to BD suggests adaptive plasticity that allows for compensatory changes and encourages further investigation of this phenotype in genetic and early intervention studies
- âŠ