288 research outputs found

    Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Full text link
    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The amount of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1 to 5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min, and the viability of the blank DCs (i.e., without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH2+) or negative (COOH-) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the amount of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.Comment: In Press. 33 pages, 11 figure

    Application of magnetically induced hyperthermia on the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections

    Full text link
    Magnetic hyperthermia is currently an EU-approved clinical therapy against tumor cells that uses magnetic nanoparticles under a time varying magnetic field (TVMF). The same basic principle seems promising against trypanosomatids causing Chagas disease and sleeping sickness, since therapeutic drugs available display severe side effects and drug-resistant strains. However, no applications of this strategy against protozoan-induced diseases have been reported so far. In the present study, Crithidia fasciculata, a widely used model for therapeutic strategies against pathogenic trypanosomatids, was targeted with Fe_{3}O_{4} magnetic nanoparticles (MNPs) in order to remotely provoke cell death using TVMFs. The MNPs with average sizes of d approx. 30 nm were synthesized using a precipitation of FeSO_{4}4 in basic medium. The MNPs were added to Crithidia fasciculata choanomastigotes in exponential phase and incubated overnight. The amount of uploaded MNPs per cell was determined by magnetic measurements. Cell viability using the MTT colorimetric assay and flow cytometry showed that the MNPs were incorporated by the cells with no noticeable cell-toxicity effects. When a TVMF (f = 249 kHz, H = 13 kA/m) was applied to MNP-bearing cells, massive cell death was induced via a non-apoptotic mechanism. No effects were observed by applying a TVMF on control (without loaded MNPs) cells. No macroscopic rise in temperature was observed in the extracellular medium during the experiments. Scanning Electron Microscopy showed morphological changes after TVMF experiments. These data indicate (as a proof of principle) that intracellular hyperthermia is a suitable technology to induce the specific death of protozoan parasites bearing MNPs. These findings expand the possibilities for new therapeutic strategies that combat parasitic infections.Comment: 9 pages, four supplementary video file

    Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles

    Get PDF
    We report on the magnetic and power absorption properties of a series of iron oxide nanoparticles with average sizes ranging from 3 to 23 nm, prepared by thermal decomposition of Iron(III) acetylacetonate in organic media. From the careful characterization of the magnetic and physicochemical properties of these samples, we were able to reproduce the specific power absorption (SPA) values experimentally found, as well as their dependence with particle size, using a simple model of Brownian and Neel Relaxation at ´ room temperature. SPA experiments in ac magnetic fields (0 = 13 kA/m and f = 250 kHz) indicated that the magnetic and rheological properties played the fundamental rule to determine the heating efficiency at different conditions. A maximum SPA value of 344 W/g was obtained for a sample containing nanoparticles with = 12 nm and dispersion σ = 0.25. The observed SPA dependence with particle diameter and their magnetic parameters indicated that, for the size range and experimental conditions of f and H studied in this work, both Neel and Brown relaxation mechanisms are important to the heat generation observed.Fil: Lima, Enio Junior. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, T. E.. Universidad de Zaragoza; EspañaFil: Rossi, L. M.. Universidade de Sao Paulo; BrasilFil: Rechenberg, R.. Universidade de Sao Paulo; BrasilFil: Berquo, T. S.. University Of Minnesota; Estados UnidosFil: Ibarra, A.. Universidad de Zaragoza; EspañaFil: Marquina, C.. Universidad de Zaragoza; EspañaFil: Ibarra, R. M.. Universidad de Zaragoza; EspañaFil: Goya, G. F.. Universidad de Zaragoza; Españ

    Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating

    Get PDF
    Magnetic hyperthermia is a new type of cancer treatment designed for overcoming resistance to chemotherapy during the treatment of solid, inaccessible human tumors. The main challenge of this technology is increasing the local tumoral temperature with minimal side effects on the surrounding healthy tissue. This work consists of an in vitro study that compared the effect of hyperthermia in response to the application of exogenous heating (EHT) sources with the corresponding effect produced by magnetic hyperthermia (MHT) at the same target temperatures. Human neuroblastoma SH-SY5Y cells were loaded with magnetic nanoparticles (MNPs) and packed into dense pellets to generate an environment that is crudely similar to that expected in solid micro-tumors, and the above-mentioned protocols were applied to these cells. These experiments showed that for the same target temperatures, MHT induces a decrease in cell viability that is larger than the corresponding EHT, up to a maximum difference of approximately 45% at T = 46 °C. An analysis of the data in terms of temperature efficiency demonstrated that MHT requires an average temperature that is 6 °C lower than that required with EHT to produce a similar cytotoxic effect. An analysis of electron microscopy images of the cells after the EHT and MHT treatments indicated that the enhanced effectiveness observed with MHT is associated with local cell destruction triggered by the magnetic nano-heaters. The present study is an essential step toward the development of innovative adjuvant anti-cancer therapies based on local hyperthermia treatments using magnetic particles as nano-heaters

    Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization

    Get PDF
    The integration of noble metal and magnetic nanoparticles with controlled structures that can couple various specific effects to the different nanocomposite in multifunctional nanosystems have been found interesting in the field of medicine. In this work, we show synthesis route to prepare small Au nanoparticles of sizes <d> = 3.9 ± 0.2 nm attached to Fe 3 O 4 nanoparticle cores (<d> = 49.2 ± 3.5 nm) in aqueous medium for potential application as a nano-heater. Remarkably, the resulted Au decorated PEI-Fe 3 O 4 (Au@PEI-Fe 3 O 4 ) nanoparticles are able to retain bulk magnetic moment M S = 82–84 Am 2 /kg Fe3O4 , with the Verwey transition observed at T V = 98 K. In addition, the in vitro cytotoxicity analysis of the nanosystem microglial BV2 cells showed high viability (>97.5%) to concentrate up to 100 µg/mL in comparison to the control samples. In vitro heating experiments on microglial BV2 cells under an ac magnetic field (H 0 = 23.87 kA/m; f = 571 kHz) yielded specific power absorption (SPA) values of SPA = 43 ± 3 and 49 ± 1 µW/cell for PEI-Fe 3 O 4 and Au@PEI-Fe 3 O 4 NPs, respectively. These similar intracellular SPA values imply that functionalization of the magnetic particles with Au did not change the heating efficiency, providing at the same time a more flexible platform for multifunctional functionalization

    Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia

    Full text link
    We have studied the magnetic and power absorption properties of three samples of CoFe2O4 nanoparticles with sizes from 5 to 12 nm prepared by thermal decomposition of Fe (acac)3 and Co(acac)2 at high temperatures. The blocking temperatures TB estimated from magnetization M(T) curves spanned the range 180 < TB < 320 K, reflecting the large magnetocrystalline anisotropy of these nanoparticles. Accordingly, high coercive fields HC \approx 1.4 - 1.7 T were observed at low temperatures. Specific Power Absorption (SPA) experiments carried out in ac magnetic fields indicated that, besides particle volume, the effective magnetic anisotropy is a key parameter determining the absorption efficiency. SPA values as high as 98 W/g were obtained for nanoparticles with average size of \approx12 nm.Comment: 4 pages, 3 figure

    Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors

    Full text link
    Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we include model errors, meaning that we assume we do not know the nonlinear regulation function of the process. In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations [B.C. Goodwin, Temporal Oscillations in Cells, (Academic Press, New York, 1963)] in the simple form recently applied to single gene systems and some operon cases [H. De Jong, J. Comp. Biol. 9, 67 (2002)], which involves the dynamics of the mRNA, given protein, and metabolite concentrations. Further, we present results for a three gene case in co-regulated sets of transcription units as they occur in prokaryotes. However, instead of considering their full dynamics, we use only the data of the metabolites and a designed software sensor. We also show, more generally, that it is possible to rebuild the complete set of nonmeasured concentrations despite the uncertainties in the regulation function or, even more, in the case of not knowing the mRNA dynamics. In addition, the rebuilding of concentrations is not affected by the perturbation due to the additive white Gaussian noise and also we managed to filter the noisy output of the biological systemComment: 21 pages, 7 figures; also selected in vjbio of August 2005; this version corrects a misorder in the last three references of the published versio

    Influencia del enfriamiento en las propiedades de titanatos de lantano y litio

    Get PDF
    Se ha estudiado el efecto de los tratamientos a alta temperatura sobre la estructura y la movilidad del litio para la solución sÛlida Li3xLa2/3-xTiO3 (0.03<x<0.167) con difracciÛn de rayos X a alta temperatura (DRXAT), espectroscopia Raman, RMN y de impedancias. Los patrones de difracción de rayos X (DRX) a temperatura ambiente de muestras enfriadas lentamente muestran una estructura tipo perovskita doblada en el eje c con simetrÌas tetragonales u ortorrómbicas, mientras que las muestras con un enfriamiento r·pido muestran una estructura tipo perovskita c ̇bica simple. Sin embargo, el espectro Raman de las muestras analizadas se interpreta, en todos los casos, con una simetrÌa tetragonal en la que el desorden catiónico se incrementa con el contenido de litio y el tratamiento de enfriamiento. La existencia de microdominios de maclado, orientados a lo largo de las tres direcciones de la perovski- ta, favorece la detecciÛn de la fase c ̇bica en los patrones de DRX. A partir de la espectroscopia de RMN del 7Li, se ha detectado un movimiento bidi- mensional del litio en las muestras ordenadas, el cual se convierte progresivamente en un movimiento tridimensional conforme se incrementa el desorden catiÛnico. Asimismo, la presencia de microdominios hace disminuir la conductividad dc de muestras con contenidos bajos de litio

    Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization

    Get PDF
    The integration of noble metal and magnetic nanoparticles with controlled structures that can couple various specific effects to the different nanocomposite in multifunctional nanosystems have been found interesting in the field of medicine. In this work, we show synthesis route to prepare small Au nanoparticles of sizes = 3.9 ± 0.2 nm attached to Fe 3 O 4 nanoparticle cores ( = 49.2 ± 3.5 nm) in aqueous medium for potential application as a nano-heater. Remarkably, the resulted Au decorated PEI-Fe 3 O 4 (Au@PEI-Fe 3 O 4 ) nanoparticles are able to retain bulk magnetic moment M S = 82–84 Am 2 /kg Fe3O4 , with the Verwey transition observed at T V = 98 K. In addition, the in vitro cytotoxicity analysis of the nanosystem microglial BV2 cells showed high viability (>97.5%) to concentrate up to 100 µg/mL in comparison to the control samples. In vitro heating experiments on microglial BV2 cells under an ac magnetic field (H 0 = 23.87 kA/m; f = 571 kHz) yielded specific power absorption (SPA) values of SPA = 43 ± 3 and 49 ± 1 μW/cell for PEI-Fe 3 O 4 and Au@PEI-Fe 3 O 4 NPs, respectively. These similar intracellular SPA values imply that functionalization of the magnetic particles with Au did not change the heating efficiency, providing at the same time a more flexible platform for multifunctional functionalization.Fil: León Félix, L.. Universidade do Brasília; Brasil. Universidad de Zaragoza; EspañaFil: Sanz, B.. Nb Nanoscale Biomagnetics S.l.; EspañaFil: Sebastián, V.. Universidad de Zaragoza; España. Centro de Investigación en Red en Bioingeniería; EspañaFil: Torres Molina, Teobaldo Enrique. Universidad de Zaragoza; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Sousa, Marcelo Henrique. Universidade do Brasília; BrasilFil: Coaquira, J. A. H.. Universidade do Brasília; BrasilFil: Ibarra, M.R.. Universidad de Zaragoza; EspañaFil: Goya, Gerardo Fabian. Universidad de Zaragoza; Españ
    corecore