996 research outputs found

    SKA studies of nearby galaxies : star-formation, accretion processes and molecular gas across all environments

    Get PDF
    Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike LicenceThe SKA will be a transformational instrument in the study of our local Universe. In particular, by virtue of its high sensitivity (both to point sources and diffuse low surface brightness emission), angular resolution and the frequency ranges covered, the SKA will undertake a very wide range of astrophysical research in the field of nearby galaxies. By surveying vast numbers of nearby galaxies of all types with μ\muJy sensitivity and sub-arcsecond angular resolutions at radio wavelengths, the SKA will provide the cornerstone of our understanding of star-formation and accretion activity in the local Universe. In this chapter we outline the key continuum and molecular line science areas where the SKA, both during phase-1 and when it becomes the full SKA, will have a significant scientific impact.Peer reviewedFinal Published versio

    Effect of water and straw management practices on methane emissions from rice fields: A review through a meta-analysis

    Full text link
    [EN] Rice fields contribute substantially to global warming of the atmosphere through emission of methane (CH4). This article reviews the state of the art of factors affecting CH4 emissions in rice fields, focusing on soil organic matter content and water management practices. A quantitative relationship between these factors was established through a meta-analysis based on a literature survey. This relationship can be useful to update emission factors used to estimate CH4 in the National Emission Inventories. Methane emissions in rice fields can be as much as 90% higher in continuously flooded rice fields compared with other water management practices, independent from straw addition. Water management systems that involve absence of flooding in total or for part of the growing period such as midseason drainages, intermittent flooding, and percolation control, can reduce CH4 emissions substantially. Moreover, CH4 emissions increase with the amount of straw added up to 7.7 t/ha for continuously flooded soils and up to 5.1 t/ha for other water regimes. Above these levels, no further increase is produced with further addition of straw. With regard to rice straw management mitigation strategies, recommended practices are composting rice straw, straw burning under controlled conditions, recollecting rice straw for biochar production, generation of energy, to be used as a substrate, or to obtain other byproducts with added value. This review improves the understanding of the relationship between straw application rate, water regimes, and CH4 emissions from rice fields to date. This relationship can help to select the most appropriate management practices to improve current mitigation strategies to reduce atmospheric CH4. © 2012 Mary Ann Liebert, Inc.This study was financially supported by Fundacio´n Agroalimed from the Consellerı´a de Agricultura of Valencia, Spain and the Vicerrectorado de Investigacio´n of the UPV (Programa de Apoyo a la Investigacio´n y Desarrollo, PAID06-11 Program, Project No. 1950).Sanchís Jiménez, EM.; Ferrer Roglán, M.; Torres, AG.; Cambra López, M.; Calvet Sanz, S. (2012). Effect of water and straw management practices on methane emissions from rice fields: A review through a meta-analysis. Environmental Engineering Science. 29(12):1053-1062. https://doi.org/10.1089/ees.2012.0006S10531062291

    Effects of IFN-γ on immune cell kinetics during the resolution of acute lung injury

    Get PDF
    The immunologic responses that occur early in the acute respiratory distress syndrome (ARDS) elicit immune-mediated damage. The mechanisms underlying the resolution of ARDS, particularly the role of signaling molecules in regulating immune cell kinetics, remain important questions. Th1-mediated responses can contribute to the pathogenesis of acute lung injury (ALI). Interferon-gamma (IFN-γ) orchestrates early inflammatory events, enhancing immune-mediated damage. The current study investigated IFN-γ during resolution in several experimental models of ALI. The absence of IFN-γ resulted in altered kinetics of lymphocyte and macrophage responses, suggesting that IFN-γ present in this microenvironment is influential in ALI resolution. Genetic deficiency of IFN-γ or administering neutralizing IFN-γ antibodies accelerated the pace of resolution. Neutralizing IFN-γ decreased the numbers of interstitial and inflammatory macrophages and increased alveolar macrophage numbers during resolution. Our results underline the complexity of lung injury resolution and provide insight into the effects through which altered IFN-γ concentrations affect immune cell kinetics and the rate of resolution. These findings suggest that therapies that spatially or temporally control IFN-γ signaling may promote ALI resolution. Identifying and elucidating the mechanisms critical to ALI resolution will allow the development of therapeutic approaches to minimize collateral tissue damage without adversely altering the response to injury

    Pathogenic mechanisms of SARS-CoV-2 infection and kidney disease: a clinical and molecular perspective

    Get PDF
    La infección por SARS-CoV-2 se ha convertido en un problema mundial de salud pública. Su presentación clínica es variada, desde benigna hasta un síndrome de distrés respiratorio agudo, afectación sistémica y fallo multiorgánico. La severidad del cuadro clínico depende de factores biológicos del virus y del huésped y de comorbilidades como la enfermedad renal. Además, la interacción entre el virus, la enzima convertidora de angiotensina 2 y la respuesta inmunológica exacerbada podría conducir al desarrollo de lesión renal aguda. Sin embargo, las implicaciones de la infección por SARSCoV-2 sobre las células renales, las repercusiones pronósticas en los pacientes con enfermedad renal crónica y su efecto a largo plazo sobre la función renal no están del todo claras. El objetivo es revisar el papel del SARSCoV-2 en la enfermedad renal aguda y crónica, y sus posibles mecanismos patogénicos en la afectación renal.The SARS-CoV-2 infection has become as a worldwide public health emergency. It exhibits a variety of clinical presentations, ranging from benign to acute respiratory distress syndrome, systemic involvement, and multiorganic failure. The severity of the clinical picture depends on host and virus biological features and the presence of comorbidities such as chronic kidney disease. In addition, the interaction between the virus, angiotensin-converting enzyme 2, and the exacerbated immune response could lead to the development of acute kidney injury. However, the implications of SARSCoV-2 infection on renal cells, the prognosis of patients with chronic kidney disease, and the long-term behavior of renal function are not entirely understood. This review aims to explore the role of SARS-CoV-2 in acute and chronic kidney disease and the possible pathogenic mechanisms of renal involvement

    Constraints on the Progenitor System and the Environs of SN 2014J from Deep Radio Observations

    Get PDF
    We report deep EVN and eMERLIN observations of the Type Ia SN 2014J in the nearby galaxy M82. Our observations represent, together with JVLA observations of SNe 2011fe and 2014J, the most sensitive radio studies of Type Ia SNe ever. By combining data and a proper modeling of the radio emission, we constrain the mass-loss rate from the progenitor system of SN 2014J to M˙7.0×1010Myr1\dot{M} \lesssim 7.0\times 10^{-10} {\,{M_{\odot } \,\rm yr^{-1}}} (for a wind speed of 100 km s-1). If the medium around the supernova is uniform, then n ISM lesssim 1.3 cm-3, which is the most stringent limit for the (uniform) density around a Type Ia SN. Our deep upper limits favor a double-degenerate (DD) scenario involving two WD stars for the progenitor system of SN 2014J, as such systems have less circumstellar gas than our upper limits. By contrast, most single-degenerate (SD) scenarios, i.e., the wide family of progenitor systems where a red giant, main-sequence, or sub-giant star donates mass to an exploding WD, are ruled out by our observations. (While completing our work, we noticed that a paper by Margutti et al. was submitted to The Astrophysical Journal. From a non-detection of X-ray emission from SN 2014J, the authors obtain limits of M˙1.2×109\dot{M} \lesssim 1.2 \times 10^{-9} M ☉ yr-1 (for a wind speed of 100 km s-1) and n ISM lesssim 3.5 cm-3, for the ρ∝r -2 wind and constant density cases, respectively. As these limits are less constraining than ours, the findings by Margutti et al. do not alter our conclusions. The X-ray results are, however, important to rule out free-free and synchrotron self-absorption as a reason for the radio non-detections.) Our estimates on the limits on the gas density surrounding SN2011fe, using the flux density limits from Chomiuk et al., agree well with their results. Although we discuss the possibilities of an SD scenario passing observational tests, as well as uncertainties in the modeling of the radio emission, the evidence from SNe 2011fe and 2014J points in the direction of a DD scenario for both

    Presupernova Structure of Massive Stars

    Full text link
    Issues concerning the structure and evolution of core collapse progenitor stars are discussed with an emphasis on interior evolution. We describe a program designed to investigate the transport and mixing processes associated with stellar turbulence, arguably the greatest source of uncertainty in progenitor structure, besides mass loss, at the time of core collapse. An effort to use precision observations of stellar parameters to constrain theoretical modeling is also described.Comment: Proceedings for invited talk at High Energy Density Laboratory Astrophysics conference, Caltech, March 2010. Special issue of Astrophysics and Space Science, submitted for peer review: 7 pages, 3 figure
    corecore