1,535 research outputs found

    Las ovejas palmeras: una raza en peligro de extinción

    Get PDF
    Las Islas Canarias a pesar de ser un territorio relativamente de poca extensión y de haber tenido con la Ley de Puertos Francos la posibilidad de un gran comercio exterior, que ha permitido a los ganaderos la importación de multitud de razas de animales domésticos seleccionados, cuentan todavía con una interesante representación de razas autóctonas. Estos animales han resistido de distinta forma la presión que sobre ellas han ejercido otras razas selectas y la intensificación de la producción ganadera tan generaliza en los últimos años. De todos ellos, la raza Ovina Palmero, a pesar de los esfuerzos del Excmo. Cabildo Insular de la Palma y la Consejería de Agricultura, Pesca y Alimentación, se encuentra en una situación extrema y muy crítica desde el punto de vista de su conservación debido a su reducidísimo número de ejemplares. Este trabajo pretende en cierta medida dar a conocer las características de estos animales, sus posibilidades, y sobre todo, despertar el interés para su recuperación y posterior conservación, atendiendo a que es responsabilidad de todos nosotros que no se pierda parte de nuestra cultura e historia

    Magnetic nanoparticles for magnetically guided therapies against neural diseases

    Get PDF
    Neurological pathologies and nerve damage are two problems of significant medical and economic impact because of the hurdles of losing nerve functionality in addition to significant mortality and morbidity, and demanding rehabilitation. There are currently a number of examples of how nanotechnology can provide new solutions for biomedical problems. Current strategies for nerve repair rely on the use of functionalized scaffolds working as nerve guidance channels to improve axonal regeneration and to direct axonal re-growth across the nerve lesion site. Since low invasiveness and high selectivity of the growth stimulation are usually conflicting requirements, new approaches are being pursued in order to overcome such limitations. Engineered magnetic nanoparticles (MNPs) have emerged from this need for noninvasive therapies for both positioning and guiding neural cells in response to an external magnetic field. Here, we review the current state of the use of MNPs for neuroprotective and magnetically guided therapies. We discuss some conceivable outcomes of current magnetically driven strategies seeking integrated platforms for regenerative action on damaged tissues

    Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells

    Get PDF
    We present evidence on the effects of exogenous heating by water bath (WB) and magnetic hyperthermia (MHT) on a glial micro-tumor phantom. To this, magnetic nanoparticles (MNPs) of 30-40 nm were designed to obtain particle sizes for maximum heating efficiency. The specific power absorption (SPA) values (f = 560 kHz, H = 23.9 kA/m) for as prepared colloids (533-605 W/g) dropped to 98-279 W/g in culture medium. The analysis of the intracellular MNPs distribution showed vesicle-trapped MNPs agglomerates spread along the cytoplasm, as well as large (~0.5-0.9 µm) clusters attached to the cell membrane. Immediately after WB and MHT (T = 46 °C for 30 min) the cell viability was ˜70% and, after 4.5 h, decreased to 20-25%, demonstrating that metabolic processes are involved in cell killing. The analysis of the cell structures after MHT revealed a significant damage of the cell membrane that is correlated to the location of MNPs clusters, while local cell damage were less noticeable after WB without MNPs. In spite of the similar thermal effects of WB and MHT on the cell viability, our results suggest that there is an additional mechanism of cell damage related to the presence of MNPs at the intracellular space

    Necessary Optimality Conditions for a Dead Oil Isotherm Optimal Control Problem

    Full text link
    We study a system of nonlinear partial differential equations resulting from the traditional modelling of oil engineering within the framework of the mechanics of a continuous medium. Recent results on the problem provide existence, uniqueness and regularity of the optimal solution. Here we obtain the first necessary optimality conditions.Comment: 9 page

    Application of mineralogical, petrological and geochemical tools for evaluating the palaeohdrogeological evolution of the PADAMOT study sites

    Get PDF
    The role of Work Package (WP) 2 of the PADAMOT project – ‘Palaeohydrogeological Data Measurements’ - has been to study late-stage fracture mineral and water samples from groundwater systems in Spain, Sweden, United Kingdom and the Czech Republic, with the aim of understanding the recent palaeohydrogeological evolution of these groundwater systems. In particular, the project sought to develop and evaluate methods for obtaining information about past groundwater evolution during the Quaternary (about the last 2 million years) by examining how the late-stage mineralization might record mineralogical, petrographical and geochemical evidence of how the groundwater system may have responded to past geological and climatological changes. Fracture-flow groundwater systems at six European sites were studied: • Melechov Hill, in the Bohemian Massif of the Czech Republic: a shallow (0-100 m) dilute groundwater flow system within the near-surface weathering zone in fractured granitic rocks; • Cloud Hill, in the English Midlands: a (~100 m) shallow dilute groundwater flow system in fractured and dolomitized Carboniferous limestone; • Los Ratones, in southwest Spain: an intermediate depth (0-500 m) dilute groundwater flow system in fractured granitic rocks; • Laxemar, in southeast Sweden: a deep (0-1000 m) groundwater flow system in fractured granitic rocks. This is a complex groundwater system with potential recharge and flushing by glacial, marine, lacustrine and freshwater during the Quaternary; • Sellafield, northwest England: a deep (0-2000 m) groundwater flow system in fractured Ordovician low-grade metamorphosed volcaniclastic rocks and discontinuous Carboniferous Limestone, overlain by a Permo-Triassic sedimentary sequence with fracture and matrix porosity. This is a complex coastal groundwater system with deep hypersaline sedimentary basinal brines, and deep saline groundwaters in crystalline basement rocks, overlain by a shallow freshwater aquifer system. The site was glaciated several times during the Quaternary and may have been affected by recharge from glacial meltwater; • Dounreay, northeast Scotland: a deep (0-1400 m) groundwater flow system in fractured Precambrian crystalline basement overlain by fractured Devonian sedimentary rocks. This is within the coastal discharge area of a complex groundwater system, comprising deep saline groundwater hosted in crystalline basement, overlain by a fracture-controlled freshwater sedimentary aquifer system. Like Sellafield, this area experienced glaciation and may potentially record the impact of glacial meltwater recharge. In addition, a study has been made of two Quaternary sedimentary sequences in Andalusia in southeastern Spain to provide a basis of estimating the palaeoclimatic history of the region that could be used in any reconstruction of the palaeoclimatic history at the Los Ratones site: • The Cúllar-Baza lacustrine sequence records information about precipitation and palaeotemperature regimes, derived largely from the analysis of the stable isotope (δ18O and δ13C) signatures from biogenic calcite (ostracod shells). • The Padul Peat Bog sequence provided information on past vegetation cover and palaeogroundwater inputs based on the study of fossil pollen and biomarkers as proxies for past climate change. Following on from the earlier EC 4th Framework EQUIP project, the focus of the PADAMOT studies has been on calcite mineralization. Calcite has been identified as a late stage mineral, closely associated with hydraulically-conductive fractures in the present-day groundwater systems at the Äspö-Laxemar, Sellafield, Dounreay and Cloud Hill sites. At Los Ratones and Melechov sites late-stage mineralization is either absent or extremely scarce, and both the quantity and fine crystal size of any late-stage fracture mineralization relevant to Quaternary palaeohydrogeological investigations is difficult to work with. The results from the material investigated during the PADAMOT studies indicate that the fracture fillings at these sites are related to hydrothermal activity, and so do not have direct relevance as Quaternary indicators. Neoformed calcite has not been found at these two sites at the present depth of the investigations. Furthermore, the HCO3 - concentration in all the Los Ratones groundwaters is mainly controlled by complex carbonate dissolution. The carbonate mineral saturation indices do not indicate precipitation conditions, and this is consistent with the fact that neoformed calcite, ankerite or dolomite have not been observed petrographically

    Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization

    Get PDF
    The integration of noble metal and magnetic nanoparticles with controlled structures that can couple various specific effects to the different nanocomposite in multifunctional nanosystems have been found interesting in the field of medicine. In this work, we show synthesis route to prepare small Au nanoparticles of sizes <d> = 3.9 ± 0.2 nm attached to Fe 3 O 4 nanoparticle cores (<d> = 49.2 ± 3.5 nm) in aqueous medium for potential application as a nano-heater. Remarkably, the resulted Au decorated PEI-Fe 3 O 4 (Au@PEI-Fe 3 O 4 ) nanoparticles are able to retain bulk magnetic moment M S = 82–84 Am 2 /kg Fe3O4 , with the Verwey transition observed at T V = 98 K. In addition, the in vitro cytotoxicity analysis of the nanosystem microglial BV2 cells showed high viability (>97.5%) to concentrate up to 100 µg/mL in comparison to the control samples. In vitro heating experiments on microglial BV2 cells under an ac magnetic field (H 0 = 23.87 kA/m; f = 571 kHz) yielded specific power absorption (SPA) values of SPA = 43 ± 3 and 49 ± 1 µW/cell for PEI-Fe 3 O 4 and Au@PEI-Fe 3 O 4 NPs, respectively. These similar intracellular SPA values imply that functionalization of the magnetic particles with Au did not change the heating efficiency, providing at the same time a more flexible platform for multifunctional functionalization

    How well is Patella vulgata Linnaeus 1758 reflecting changes in sea surface temperatures (SST)? First results using living and archaeological samples from Northern Spain

    Get PDF
    Human populations have been exploiting coastal regions in different parts of the planet, at least since the Middle Palaeolithic. In Cantabrian Spain, the study of the exploitation of molluscs and shell middens formation during the late Pleistocene and early Holocene has shown the importance of these resources in human diets, being one of the most commonly collected species the limpet Patella vulgata which is present from the upper Palaeolithic to the Neolithic (ca. 40,000-5700 cal BP)

    Low-Dimensional Assemblies of Magnetic MnFe2O4 Nanoparticles and Direct In Vitro Measurements of Enhanced Heating Driven by Dipolar Interactions: Implications for Magnetic Hyperthermia

    Get PDF
    Magnetic fluid hyperthermia (MFH), the procedure of raising the temperature of tumor cells using magnetic nanoparticles (MNPs) as heating agents, has proven successful in treating some types of cancer. However, the low heating power generated under physiological conditions makes it necessary a high local concentration of MNPs at tumor sites. Here, we report how the in vitro heating power of magnetically soft MnFe2O4 nanoparticles can be enhanced by intracellular low-dimensional clusters through a strategy that includes: (a) the design of the MNPs to retain Neel magnetic relaxation in high-viscosity media, and (b) culturing MNP-loaded cells under magnetic fields to produce elongated intracellular agglomerates. Our direct in vitro measurements demonstrated that the specific loss power (SLP) of elongated agglomerates (SLP = 576 +/- 33 W/g) induced by culturing BV2 cells in situ under a dc magnetic field was increased by a factor of 2 compared to the SLP = 305 +/- 25 W/g measured in aggregates freely formed within cells. A numerical mean-field model that included dipolar interactions quantitatively reproduced the SLPs of these clusters both in phantoms and in vitro, suggesting that it captures the relevant mechanisms behind power losses under high-viscosity conditions. These results indicate that in situ assembling of MNPs into low-dimensional structures is a sound possible way to improve the heating performance in MFH

    The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia

    Get PDF
    The Linear Response Theory (LRT) is a widely accepted framework to analyze the power absorption of magnetic nanoparticles for magnetic fluid hyperthermia. Its validity is restricted to low applied fields and/or to highly anisotropic magnetic nanoparticles. Here, we present a systematic experimental analysis and numerical calculations of the specific power absorption for highly anisotropic cobalt ferrite (CoFe 2 O 4 ) magnetic nanoparticles with different average sizes and in different viscous media. The predominance of Brownian relaxation as the origin of the magnetic losses in these particles is established, and the changes of the Specific Power Absorption (SPA) with the viscosity of the carrier liquid are consistent with the LRT approximation. The impact of viscosity on SPA is relevant for the design of MNPs to heat the intracellular medium during in vitro and in vivo experiments. The combined numerical and experimental analyses presented here shed light on the underlying mechanisms that make highly anisotropic MNPs unsuitable for magnetic hyperthermia

    Generalizations of Gronwall-Bihari Inequalities on Time Scales

    Full text link
    We establish some nonlinear integral inequalities for functions defined on a time scale. The results extend some previous Gronwall and Bihari type inequalities on time scales. Some examples of time scales for which our results can be applied are provided. An application to the qualitative analysis of a nonlinear dynamic equation is discussed.Comment: This is a preprint of an article accepted (16/May/2008) for publication in the "Journal of Difference Equations and Applications"; J. Difference Equ. Appl. is available online at http://www.informaworld.co
    corecore