6 research outputs found

    Semiconducting properties of layered cadmium sulphide-based hybrid nanocomposites

    Get PDF
    A series of hybrid cadmium salt/cationic surfactant layered nanocomposites containing different concentrations of cadmium sulphide was prepared by exchanging chloride by sulphide ions in the layered precursor CdXx(OH)y(CnTA)z in a solid phase/gas reaction, resulting in a series of layered species exhibiting stoichiometries corresponding to CdSvXx(OH)y(CnTA)z, constituted by two-dimensional CdCl2/CdS ultra-thin sheets sandwiched between two self-assembled surfactant layers. The electronic structure of CdS in the nanocomposite is similar to that of bulk, but showing the expected features of two-dimensional confinement of the semiconductor. The nanocomposite band gap is found to depend in a non-linear manner on both the length of the hydrocarbon chain of the surfactant and the concentration of the sulphide in the inorganic sheet. The products show photocatalytic activity at least similar and usually better than that of "bulk" CdS in a factor of two

    All-optical radiofrequency modulation of Anderson-localized modes

    Full text link
    All-optical modulation of light relies on exploiting intrinsic material nonlinearities. However, this optical control is rather challenging due to the weak dependence of the refractive index and absorption coefficients on the concentration of free carriers in standard semiconductors. To overcome this limitation, resonant structures with high spatial and spectral confinement are carefully designed to enhance the stored electromagnetic energy, thereby requiring lower excitation power to achieve significant nonlinear effects. Small mode-volume and high quality (Q)-factor cavities also offer an efficient coherent control of the light field and the targeted optical properties. Here, we report on optical resonances reaching Q - 10^5 induced by disorder on novel photonic/phononic crystal waveguides. At relatively low excitation powers (below 1 mW), these cavities exhibit nonlinear effects leading to periodic (up to - 35 MHz) oscillations of their resonant wavelength. Our system represents a test-bed to study the interplay between structural complexity and material nonlinearities and their impact on localization phenomena and introduces a novel functionality to the toolset of disordered photonics

    Quantifying the robustness of topological slow light

    Full text link
    Low-dimensional nanostructured materials can guide light propagating with very low group velocity vg. However, this slow light is significantly sensitive to unwanted imperfections in the critical dimensions of the nanostructure. The backscattering mean free path, xi, the average ballistic propagation length along the waveguide, quantifies the robustness of slow light against this type of structural disorder. This figure of merit determines the crossover between acceptable slow-light transmission affected by minimal scattering losses and a strong backscattering-induced destructive interference when xi exceeds the waveguide length L. Here, we calculate the backscattering mean free path for a topological photonic waveguide for a specific and determined amount of disorder and, equally relevant, for a fixed value of the group index ng which is the slowdown factor of the group velocity with respect to the speed of light in vacuum. These two figures of merit, xi and ng, should be taken into account when quantifying the robustness of topological and conventional (non-topological) slow-light transport at the nanoscale. Otherwise, any claim on a better performance of topological guided light over conventional one is not justified

    Nanoscale mapping of thermal and mechanical properties of bare and metal-covered self-assembled block copolymer thin films

    Get PDF
    We report on the structural, mechanical and thermal analysis of 40 nm thick polystyrene-block-poly (ethylene oxide) (PS-b-PEO) block copolymer (BCP) films coated with evaporated chromium layers of different thicknesses (1, 2 and 5 nm). Solvent annealing processes allow the structural control of the BCP films morphology by re-arranging the position of the PEO cylinders parallel to the substrate plane. High-vacuum scanning thermal microscopy and ultrasonic force microscopy measurements performed in ambient pressure revealed that coated ultrathin metal layers strongly influence the heat dissipation in the BCP films and the local surface stiffness of the individual BCP domains, respectively. The measured tip-sample effective thermal resistance decreases from 6.1×107 to 2.5×107 KW-1 with increasing Cr film thickness. In addition, scanning probe microscopy measurements allow the thermal and mechanical mapping of the two segregated polymer domains (PEO-PS) of sub-50 nm characteristic sizes, with sub-10 nm thermal spatial resolution. The results revealed the effect of the surface morphology of the BCP and the incorporation of the metal film on the nanoscale thermal properties and volume self-assembly on the mechanical properties. The findings from this study provide insight in the formation of high aspect ratio BCP-metal structures with the more established applications in lithography. In addition, knowledge on the thermal and mechanical properties at the nanoscale is required in emergent applications, where BCPs, or polymers in general, are part of the structure or device. The performance of such devices is commonly related to the requirement of increased heat dissipation while maintaining mechanical flexibility

    Quantifying thermal transport in buried semiconductor nanostructures via Cross-Sectional Scanning Thermal Microscopy

    Get PDF
    Managing thermal transport in nanostructures became a major challenge in development of active microelectronic, optoelectronic and thermoelectric devices, stalling the famous Moore’s law of clock speed increase of microprocessors for more than a decade. To find the solution to this and linked problems, one needs to quantify the ability of these nanostructures to conduct the heat, with adequate precision, nanoscale resolution and, essentially, for the internal layers buried in the 3D structure of modern semiconductor devices. Existing thermoreflectance measurements and “hot wire” 3ω methods cannot be effectively used at lateral dimensions of the layer below a micrometre, moreover, they are sensitive mainly to the surface layers of a relatively high thickness of above 100 nm. The scanning thermal microscopy (SThM) while providing required lateral resolution, provides mainly qualitative data of the layer conductance due to undefined tip-surface and interlayer contact resistances. In this work, we use cross-sectional SThM (xSThM), a new method combining a scanning probe microscopy compatible Ar-ion beam exit nano-cross-sectioning (BEXP) and SThM, to quantify thermal conductance in complex multilayer nanostructures and to measure local thermal conductivity of oxide and semiconductor materials such as SiO2, SiGex and GeSny. By using the new method that provides 10 nm thickness and few tens of nm lateral resolution, we pinpoint crystalline defects in SiGe/GeSn optoelectronic materials by measuring nanoscale thermal transport and quantifying thermal conductivity and interfacial thermal resistance in thin spin-on materials used in Extreme ultraviolet lithography (eUV) fabrication processing. The new capability of xSThM demonstrated here for the first time is poised to provide vital insights for thermal transport in advanced nanoscale materials and devices
    corecore