303 research outputs found

    An Appraisal of Ekalte 11 (MBQ-T 65): 34 from Tall Munbāqa (Syria)

    Full text link
    The Akkadian text from Tall Munbāqa-Ekalte (Syria): Ek 11 (MBQ-T 65) contains on its line 34 a rather bizarre passage which still remains without a coherent translation since the Ekalte texts were published. Although this document uses a similar legal phraseology generally employed in the Ekalte documents, it shows an interesting difference in using the logogram Ì.LÁ.E and the penalty clause. These are expressed through a different clause pattern. The clear economic nature of the context assures in any case that Ì.LÁ.E is not used in this text in its normal position in the apodosis formula, but in the protasis. The aim of the present paper is to investigate this problematic context and to offer some new perspectives on trying to understand this difficult passage in the Akkadian of EkalteEl texto acadio de Tell Mumbāqa-Ekalte (Siria): Ek 11 (MBQ-T 65) contiene en su línea 34 un pasaje sumamente raro que todavía permanece sin traducción coherente desde que se publicó este archivo. Aunque este documento emplea una fraseología legal similar a la de otros textos de Ekalte, muestra una diferencia interesante en la utilización del logograma Ì.LÁ.E y su cláusula de penalización. Éstos –logograma y cláusula de penalización– se expresan mediante un patrón desconocido. El claro contexto económico del pasaje asegura, en cualquier caso, que Ì.LÁ.E no se usa en este texto en su posición normal en la apodosis, sino claramente en la prótasis. El objetivo de esta contribución es investigar este problemático contexto del acadio de Ekalte y ofrecer nuevas perspectivas de interpretació

    Fossil Groups Origins III. Characterization of the sample and observational properties of fossil systems

    Get PDF
    (Abridged) Fossil systems are group- or cluster-sized objects whose luminosity is dominated by a very massive central galaxy. In the current cold dark matter scenario, these objects formed hierarchically at an early epoch of the Universe and then slowly evolved until present day. That is the reason why they are called {\it fossils}. We started an extensive observational program to characterize a sample of 34 fossil group candidates spanning a broad range of physical properties. Deep rr-band images were taken for each candidate and optical spectroscopic observations were obtained for \sim 1200 galaxies. This new dataset was completed with SDSS DR7 archival data to obtain robust cluster membership and global properties of each fossil group candidate. For each system, we recomputed the magnitude gaps between the two brightest galaxies (Δm12\Delta m_{12}) and the first and fourth ranked galaxies (Δm14\Delta m_{14}) within 0.5 R200R_{{\rm 200}}. We consider fossil systems those with Δm122\Delta m_{12} \ge 2 mag or Δm142.5\Delta m_{14} \ge 2.5 mag within the errors. We find that 15 candidates turned out to be fossil systems. Their observational properties agree with those of non-fossil systems. Both follow the same correlations, but fossils are always extreme cases. In particular, they host the brightest central galaxies and the fraction of total galaxy light enclosed in the central galaxy is larger in fossil than in non-fossil systems. Finally, we confirm the existence of genuine fossil clusters. Combining our results with others in the literature, we favor the merging scenario in which fossil systems formed due to mergers of LL^\ast galaxies. The large magnitude gap is a consequence of the extreme merger ratio within fossil systems and therefore it is an evolutionary effect. Moreover, we suggest that at least one candidate in our sample could represent a transitional fossil stage.Comment: 14 pages, 11 figures, accepted for publication in A&

    SPRTN protease-cleaved MRE11 decreases DNA repair and radiosensitises cancer cells

    Get PDF
    Funding Information: This work was funded by CRUK Programme Grant C5255/A23755. Acknowledgements Mass spectrometry analysis was performed in the MS laboratory at the Target discovery institute—NDM (Oxford) led by Benedikt M. Kessler. We thank Drs. Eva McGrowder and Blaz Groselj for processing of primary bladder tumour samples to produce cell-free extracts. Data availability The LC-MS/MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE48 partner repository with the dataset identifier PXD017964 and 10.6019/PXD017964.Peer reviewedPublisher PD

    Physics of ULIRGs with MUSE and ALMA: The PUMA project: III. Incidence and properties of ionised gas disks in ULIRGs, associated velocity dispersion, and its dependence on starburstiness

    Get PDF
    CONTEXT: A classical scenario suggests that ultra-luminous infrared galaxies (ULIRGs) transform colliding spiral galaxies into a spheroid-dominated early-type galaxy. Recent high-resolution simulations have instead shown that, under some circumstances, rotation disks can be preserved during the merging process or rapidly regrown after coalescence. Our goal is to analyse in detail the ionised gas kinematics in a sample of ULIRGs to infer the incidence of gas rotational dynamics in late-stage interacting galaxies and merger remnants. AIMS: We analysed integral field spectrograph MUSE data of a sample of 20 nearby (z < 0.165) ULIRGs (with 29 individual nuclei) as part of the Physics of ULIRGs with MUSE and ALMA (PUMA) project. We used multi-Gaussian fitting techniques to identify gaseous disk motions and the 3D-Barolo tool to model them. METHODS: We found that 27% (8 out of 29) individual nuclei are associated with kiloparsec-scale disk-like gas motions. The rest of the sample displays a plethora of gas kinematics, dominated by winds and merger-induced flows, which makes the detection of rotation signatures difficult. On the other hand, the incidence of stellar disk-like motions is ∼2 times larger than gaseous disks, as the former are probably less affected by winds and streams. The eight galaxies with a gaseous disk present relatively high intrinsic gas velocity dispersion (σ0 ∈ [30 − 85] km s−1), rotationally supported motions (with gas rotation velocity over velocity dispersion vrot/σ0 ∼ 1 − 8), and dynamical masses in the range (2 − 7)×1010 M⊙. By combining our results with those of local and high-z disk galaxies (up to z ∼ 2) from the literature, we found a significant correlation between σ0 and the offset from the main sequence (δMS), after correcting for their evolutionary trends. RESULTS: Our results confirm the presence of kiloparsec-scale rotating disks in interacting galaxies and merger remnants in the PUMA sample, with an incidence going from 27% (gas) to ≲50% (stars). Their gas σ0 is up to a factor of ∼4 higher than in local normal main sequence galaxies, similar to high-z starbursts as presented in the literature; this suggests that interactions and mergers enhance the star formation rate while simultaneously increasing the velocity dispersion in the interstellar medium

    Observational hints of radial migration in disc galaxies from CALIFA

    Get PDF
    Context. According to numerical simulations, stars are not always kept at their birth galactocentric distances but they have a tendency to migrate. The importance of this radial migration in shaping galactic light distributions is still unclear. However, if radial migration is indeed important, galaxies with different surface brightness (SB) profiles must display differences in their stellar population properties. Aims: We investigate the role of radial migration in the light distribution and radial stellar content by comparing the inner colour, age, and metallicity gradients for galaxies with different SB profiles. We define these inner parts, avoiding the bulge and bar regions and up to around three disc scale lengths (type I, pure exponential) or the break radius (type II, downbending; type III, upbending). Methods: We analysed 214 spiral galaxies from the CALIFA survey covering different SB profiles. We made use of GASP2D and SDSS data to characterise the light distribution and obtain colour profiles of these spiral galaxies. The stellar age and metallicity profiles were computed using a methodology based on full-spectrum fitting techniques (pPXF, GANDALF, and STECKMAP) to the Integral Field Spectroscopic CALIFA data. Results: The distributions of the colour, stellar age, and stellar metallicity gradients in the inner parts for galaxies displaying different SB profiles are unalike as suggested by Kolmogorov-Smirnov and Anderson-Darling tests. We find a trend in which type II galaxies show the steepest profiles of all, type III show the shallowest, and type I display an intermediate behaviour. Conclusions: These results are consistent with a scenario in which radial migration is more efficient for type III galaxies than for type I systems, where type II galaxies present the lowest radial migration efficiency. In such a scenario, radial migration mixes the stellar content, thereby flattening the radial stellar properties and shaping different SB profiles. However, in light of these results we cannot further quantify the importance of radial migration in shaping spiral galaxies, and other processes, such as recent star formation or satellite accretion, might play a role

    The PUMA project. III. Incidence and properties of ionised gas disks in ULIRGs, associated velocity dispersion and its dependence on starburstiness

    Get PDF
    A classical scenario suggests that ULIRGs transform colliding spiral galaxies into a spheroid dominated early-type galaxy. Recent high-resolution simulations have instead shown that, under some circumstances, rotation disks can be preserved during the merging process or rapidly regrown after coalescence. Our goal is to analyze in detail the ionised gas kinematics in a sample of ULIRGs to infer the incidence of gas rotational dynamics in late-stage interacting galaxies and merger remnants. We analysed MUSE data of a sample of 20 nearby (z<0.165) ULIRGs, as part of the "Physics of ULIRGs with MUSE and ALMA" (PUMA) project. We found that 27% individual nuclei are associated with kpc-scale disk-like gas motions. The rest of the sample displays a plethora of gas kinematics, dominated by winds and merger-induced flows, which make the detection of rotation signatures difficult. On the other hand, the incidence of stellar disk-like motions is ~2 times larger than gaseous disks, as the former are probably less affected by winds and streams. The eight galaxies with a gaseous disk present relatively high intrinsic gas velocity dispersion (sigma = 30-85 km/s), rotationally-supported motions (with gas rotation velocity over velocity dispersion vrot/sigma > 1-8), and dynamical masses in the range (2-7)x1e10 Msun. By combining our results with those of local and high-z disk galaxies from the literature, we found a significant correlation between sigma and the offset from the main sequence (MS), after correcting for their evolutionary trends. Our results confirm the presence of kpc-scale rotating disks in interacting galaxies and merger remnants, with an incidence going from 27% (gas) to ~50% (stars). The ULIRGs gas velocity dispersion is up to a factor of ~4 higher than in local normal MS galaxies, similar to high-z starbursts as presented in the literature

    Physics of ULIRGs with MUSE and ALMA: The PUMA project: I. Properties of the survey and first MUSE data results

    Get PDF
    Ultraluminous infrared galaxies (ULIRGs) are characterised by extreme starburst (SB) and AGN activity, and are therefore ideal laboratories for studying the outflow phenomena. We have recently started a project called Physics of ULIRGs with MUSE and ALMA (PUMA), which is a survey of 25 nearby (z < 0.165) ULIRGs observed with the integral field spectrograph MUSE and the interferometer ALMA. This sample includes systems with both AGN and SB nuclear activity in the pre- and post-coalescence phases of major mergers. The main goals of the project are to study the prevalence of multi-phase outflows as a function of the galaxy properties, to constrain the driving mechanisms of the outflows (e.g. distinguish between SB and AGN winds), and to identify feedback effects on the host galaxy. In this first paper, we present details on the sample selection, MUSE observations, and derive first data products. MUSE data were analysed to study the dynamical status of each of the 21 ULIRGs observed so far, taking the stellar kinematics and the morphological properties inferred from MUSE narrow-band images into account. We also located the ULIRG nuclei, using near-IR (HST) and mm (ALMA) data, and studied their optical spectra to infer the ionisation state through BPT diagnostics, and outflows in both ionised and neutral gas. We show that the morphological and stellar kinematic classifications are consistent: post-coalescence systems are more likely associated with ordered motions, while interacting (binary) systems are dominated by non-ordered and streaming motions. We also find broad and asymmetric [OIII] and NaID profiles in almost all nuclear spectra, with line widths in the range 300-2000 km/s, possibly associated with AGN- and SB-driven winds. This result reinforces previous findings that indicated that outflows are ubiquitous during the pre- and post-coalescence phases of major mergers.ERC STF

    p97/VCP inhibition causes excessive MRE11-dependent DNA end resection promoting cell killing after ionizing radiation

    Get PDF
    Funding Information: This work was funded by Cancer Research UK (CRUK) program grant C5255/A23755 to A.E.K. Medical Research Council UK (MRC) program grant MC_PC 12001/1 (MC_UU_00001/1) and Breast Cancer Now (Grant No. 2019DecPR1406) to K.R. S.K. was supported by the MRC Oxford Institute of Radiation Oncology (OIRO) CRUK studentship. We thank Dr. Sovan Sarkar (Department of Oncology, University of Oxford) for generously providing DR-GFP U2OS cells. We thank Diogo Dias (Ludwig Cancer Research Institute, University of Oxford) for his technical advice on HR and SSA assays and assistance with the analysis. We thank Dr. Lisa Folkes and Alix Hampson for the high-performance liquid chromatography (HPLC) analysis of CB-5083 concentration in tissue extracts from CD-1 nude mice bearing subcutaneous RT112 tumors. We also thank the Oxford Radcliffe Biobank for providing us with human tissue sections.Peer reviewedPublisher PD
    corecore