946 research outputs found
Background modeling for video sequences by stacked denoising autoencoders
Nowadays, the analysis and extraction of relevant information in visual data flows is of paramount importance. These images sequences can last for hours, which implies that the model must adapt to all kinds of circumstances so that the performance of the system does not decay over time. In this paper we propose a methodology for background modeling and foreground detection, whose main characteristic is its robustness against stationary noise. Thus, stacked denoising autoencoders are applied to generate a set of robust characteristics for each region or patch of the image, which will be the input of a probabilistic model to determine if that region is background or foreground. The evaluation of a set of heterogeneous sequences results in that, although our proposal is similar to the classical methods existing in the literature, the inclusion of noise in these sequences causes drastic performance drops in the competing methods, while in our case the performance stays or falls slightly.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
MEDIRECT: A first user experiment
This paper presents MEDIRECT, a FUSE experiment for accurate measurement of the quality of service in power systems using DSP´s
Background modeling by shifted tilings of stacked denoising autoencoders
The effective processing of visual data without interruption is currently of supreme importance. For that purpose, the analysis system must adapt to events that may affect the data quality and maintain its performance level over time. A methodology for background modeling and foreground detection, whose main characteristic is its robustness against stationary noise, is presented in the paper. The system is based on a stacked denoising autoencoder which extracts a set of significant features for each patch of several shifted tilings of the video frame. A probabilistic model for each patch is learned. The distinct patches which include a particular pixel are considered for that pixel classification. The experiments show that classical methods existing in the literature experience drastic performance drops when noise is present in the video sequences, whereas the proposed one seems to be slightly affected. This fact corroborates the idea of robustness of our proposal, in addition to its usefulness for the processing and analysis of continuous data during uninterrupted periods of time.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Analyzing First-Person Stories Based on Socializing, Eating and Sedentary Patterns
First-person stories can be analyzed by means of egocentric pictures acquired
throughout the whole active day with wearable cameras. This manuscript presents
an egocentric dataset with more than 45,000 pictures from four people in
different environments such as working or studying. All the images were
manually labeled to identify three patterns of interest regarding people's
lifestyle: socializing, eating and sedentary. Additionally, two different
approaches are proposed to classify egocentric images into one of the 12 target
categories defined to characterize these three patterns. The approaches are
based on machine learning and deep learning techniques, including traditional
classifiers and state-of-art convolutional neural networks. The experimental
results obtained when applying these methods to the egocentric dataset
demonstrated their adequacy for the problem at hand.Comment: Accepted at First International Workshop on Social Signal Processing
and Beyond, 19th International Conference on Image Analysis and Processing
(ICIAP), September 201
Un proyecto audiovisual sobre el equilibrio químico para el máster en formación del profesorado de educación secundaria
La implantación del Máster en Formación del Profesorado de Educación Secundaria y Bachillerato, Formación Profesional y Enseñanza de Idiomas (MFPS) está suponiendo la participación de profesorado de diferentes áreas de conocimiento procedentes de distintas facultades. Desde el punto de vista de las didáctica de la química es una gran oportunidad para acercar los resultados de la investigación a otros ámbitos disciplinares de la química y posibilitar su puesta en práctica. Con esta intención, en la UCM, se ha llevado a cabo un proyecto audiovisual, sobre una propuesta didáctica para el equilibrio químico, como estrategia didáctica para la formación inicial de futuros profesores de secundaria de Física y Química
Saint Venant’s equations for dense-snow avalanche modelling
[ES] La creciente preocupación por los riesgos naturales, como las avalanchas de nieve, ha propiciado el desarrollo de modelos numéricos ad hoc como una herramienta de soporte para su análisis y evaluación. Los modelos existentes para simulación de aludes se basan en la conservación de la masa y de la cantidad de movimiento, que son unas ecuaciones similares a las ecuaciones de Saint Venant para agua con diferencias sólo en los términos de fricción (modelo reológico). Este documento muestra las posibilidades de estas ecuaciones para simular avalanchas de placa-densa y el tratamiento numérico realizado en Iber. Se ha empleado una nueva metodología para equilibrar el término fuente y el vector de flujo evitando así oscilaciones espurias y movimientos no reales, y que modifica la pendiente de fondo en base a los parámetros del fluido y así detener su movimiento. La herramienta se ha probado en dos casos de estudio para analizar el comportamiento del fluido en función de los parámetros del mode[EN] The growing concern about natural hazards, such as snow avalanches, has led to the development of ad hoc numerical models as a support tool for their analysis and evaluation. Existing models for avalanche simulation are based on the conservation of mass and the momentum, which are similar equations to the Saint Venant equations for water with differences only in terms of friction (rheological model). This document shows the possibilities of these equations to simulate dense-slab avalanches and the numerical treatment carried out in Iber. A new methodology has been used to balance the source term and the flow vector to avoid spurious oscillations and unreal movements, modifying the bottom slope based on the fluid parameters and thus stop its movement. The tool has been tested in two case studies to analyse the behaviour of the fluid depending on the parameters of the rheological model.Sanz-Ramos, M.; Bladé, E.; Torralba, A.; Oller, P. (2020). Las ecuaciones de Saint Venant para la modelización de avalanchas de nieve densa. Ingeniería del agua. 24(1):65-79. https://doi.org/10.4995/ia.2020.12302OJS6579241Adewale, F.J., Lucky, A.P., Oluwabunmi, A.P., Boluwaji, E.F. 2017. Selecting the most appropriate model for rheological characterization of synthetic based drilling mud. Int. J. Appl. Eng. Res., 12, 7614-7629.Ancey, C. 2006. Dynamique des avalanches. École Polytechnique Fédérale de Lausanne, Lausanne (Suisse).Ancey, C., Gervasoni, C., Meunier, M. 2004. Computing extreme avalanches. Cold Reg. Sci. Technol., 39, 161-180. https://doi.org/10.1016/j.coldregions.2004.04.004Anderson, J.D. 1995. Computational Fluid Dynamics: The basis with applications, 6th Ed. ed. McGraw-Hill, Inc. London.Barbolini, M., Issler, D. 2006. Avalanche Test Sites and Research Equipment in Europe An Updated Overview. SATSIE Project Team. Accesible at http://satsie.ngi.no/docs/satsie_d08.pdf.Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., Schumacher, L. 2017. RAMMS: Avalanche User Manual. WSL Institute for Snow and Avalanche Research SLF.Bartelt, P., Salm, B., Gruber, U. 1999. Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J. Glaciol., 45, 242-254. https://doi.org/10.3189/S002214300000174XBartelt, P., Valero, C.V., Feistl, T., Christen, M., Bühler, Y., Buser, O. 2015. Modelling cohesion in snow avalanche flow. J. Glaciol., 61, 837-850. https://doi.org/10.3189/2015JoG14J126Beguería, S., W. J. Van Asch, T., Malet, J.P., Gröndahl, S. 2009. A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat. Hazards Earth Syst. Sci. 9, 1897-1909. https://doi.org/10.5194/nhess-9-1897-2009Bermúdez, A., Dervieux, A., Desideri, J.A., Vázquez, M.E. 1998. Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Eng., 155, 49-72. https://doi.org/10.1016/S0045-7825(97)85625-3Bingham, E.C. 1916. An investigation of the laws of plastic flow. Bull. Bur. Stand., 13, 309-353. https://doi.org/10.6028/bulletin.304Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., 30, 1-10. https://doi.org/10.1016/j.rimni.2012.07.004Bladé, E., Gómez-Valentín, M. 2006. Modelación del flujo en lámina libre sobre cauces naturales. Análisis integrado en una y dos dimensiones. Centro Internacional de Métodos Numéricos en Ingeniería. Monografía CIMNE no 97, Junio 2006.Blagovechshenskiy, V., Eglit, M., Naaim, M. 2002. The calibration of an avalanche mathematical model using field data. Nat. Hazards Earth Syst. Sci., 2, 217-220. https://doi.org/10.5194/nhess-2-217-2002Cea, L. 2005. An unstructured finite volume model for unsteady turbulent shallow water flow with wet-dry fronts: numerical solver and experimental validation. Tesis Dr. Universidad da Coruña.Cea, L., Puertas, J., Vázquez-Cendón, M.E. 2007. Depth averaged modelling of turbulent shallow water flow with wet-dry fronts. Arch. Comput. Methods Eng., 14, 303-341. https://doi.org/10.1007/s11831-007-9009-3Chaudhry, M.H. 2008. Open-channel flow: Second Edition, Open-Channel Flow: Second Edition. Springer Science+Business Media, LLC. https://doi.org/10.1007/978-0-387-68648-6Christen, M., Bartelt, P., Gruber, U. 2002. AVAL-1D: An avalanche dynamics program for the practice, in: International Congress Interpraevent. Pacific Rim, 14-18 October 2002, Matsumoto, Japan, pp. 715-725.Christen, M., Bartelt, P., Gruber, U., Issler, D. 2001. AVAL-1D - numerical calculations of dense flow and powder snow avalanches. Swiss Federal Institute for Snow and Avalanche Research, Davos, Switzerland. Technical report.Christen, M., Kowalski, J., Bartelt, P. 2010. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 63, 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005Deardorff, J.W. 1970. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., 41, 453-480. https://doi.org/10.1017/S0022112070000691Dent, J.D., Lang, T.E. 1983. A biviscous modified Bingham model of snow avalanche motion. Ann. Glaciol., 4, 42-46. https://doi.org/10.3189/S0260305500005218Fischer, J.T., Kofler, A., Fellin, W., Granig, M., Kleemayr, K. 2015. Multivariate parameter optimization for computational snow avalanche simulation. J. Glaciol, 61, 875-888. https://doi.org/10.3189/2015JoG14J168Gaume, J., Van Herwijnen, A., Chambon, G., Wever, N., Schweizer, J. 2017. Snow fracture in relation to slab avalanche release: Critical state for the onset of crack propagation. Cryosphere, 11, 217-228. https://doi.org/10.5194/tc-11-217-2017Gruber, U., Bartelt, P. 2007. Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS. Environ. Model. Softw., 22, 1472-1481. https://doi.org/10.1016/j.envsoft.2007.01.001Hungr, O. 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J., 32, 610-623. https://doi.org/10.1139/t95-063Hungr, O., McDougall, S. 2009. Two numerical models for landslide dynamic analysis. Comput. Geosci. 35, 978-992. https://doi.org/10.1016/j.cageo.2007.12.003ICSI-IAHS, 1981. Avalanche atlas; illustrated international avalanche classification. International Commission on Snow and Ice of the International Association of Hydrological Sciences. UNESCO, Courvoisier SA, París, France.Issler, D., Harbitz, C.B., Kristensen, K., Lied, K., Moe, A.S., Barbolini, M., De Blasio, F. V., Khazaradze, G., McElwaine, J.N., Mears, A.I., Naaim, M., Sailer, R. 2005. A comparison of avalanche models with data from dry-snow avalanches at Ryggfonn, Norway. Landslides Avalanches ICFL 2005 Norw. 173-179.Julien, P.Y., León, C.A. 2000. Mudfloods, mudflows and debrisflows, classification in rheology and structural design, in: Int. Workshop on the Debris Flow Disaster 27 November-1 December 1999. pp. 1-15.Keylock, C.J., Barbolini, M. 2011. Snow avalanche impact pressure - vulnerability relations for use in risk assessment. Can. Geotech. J., 38, 227-238. https://doi.org/10.1139/t00-100Maggioni, M., Bovet, E., Dreier, L., Buehler, Y., Godone, D., Bartelt, P., Freppaz, M., Chiaia, B., Segor, V. 2013. Influence of summer and winter surface topography on numerical avalanche simulations, in: International Snow Science Workshop. ISSW 2013. At: Grenoble Chamonix-Mont-Blanc, France, pp. 591-598.Naef, D., Rickenmann, D., Rutschmann, P., McArdell, B.W. 2006. Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat. Hazards Earth Syst. Sci., 6, 155-165. https://doi.org/10.5194/nhess-6-155-2006Oller, P., Janeras, M., de Buen, H., Arnó, G., Christen, M., García, C., Martínez, P. 2010. Using AVAL-1D to simulate avalanches in the eastern Pyrenees. Cold Reg. Sci. Technol., 64, 190-198. https://doi.org/10.1016/j.coldregions.2010.08.011Orszag, S.A. 1970. Analytical theories of turbulence. J. Fluid Mech., 41, 363-386. https://doi.org/10.1017/S0022112070000642Pitsch, H. 2006. Large-Eddy simulation turbulent combustion. Annu. Rev. Fluid Mech., 38, 453-482. https://doi.org/10.1146/annurev.fluid.38.050304.092133Reynolds, O. 2006. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 186, 123-164. https://doi.org/10.1098/rsta.1895.0004Roe, P.L. 1986. A basis for the upwind differencing of the two-dimensional unsteady Euler equations, in: Morton, K.W., Baines, M.J. (Eds.), Numerical Methods for Fluid Dynamics II. pp. 59-80.Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surf. Process. Landforms, 44, 1694-1709. https://doi.org/10.1002/esp.4603Sagaut, P. 2001. Large Eddy Simulation for incompressible flows. An introduction. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-662-04416-2Salm, B. 1993. Flow, flow transition and runout distances of flowing avalanches. Ann. Glaciol., 18, 221-226. https://doi.org/10.1017/S0260305500011551Sanz-Ramos, M., Bladé, E., Niñerola, D., Palau-Ibars, A. 2018. Evaluación numérico-experimental del comportamiento histérico del coeficiente de rugosidad de los macrófitos. Ing. del Agua, 22, 109-124. https://doi.org/10.4995/ia.2018.8880Savage, S.B., Hutter, K. 1989. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 199, 177-215. https://doi.org/10.1017/S0022112089000340Scheidl, C., Rickenmann, D., McArdell, B.W. 2013. Runout Prediction of Debris Flows and Similar Mass Movements, in: Margottini C., Canuti P., Sassa K. (Eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_30Schweizer, J., Jamieson, J.B., Schneebeli, M. 2003. Snow avalanche formation. Rev. Geophys. 41. https://doi.org/10.1029/2002RG000123Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Mon. Weather Rev., 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2Tan, W.Y. 1992. Shallow Water Hydrodynamics, first Edit. ed. Elsevier Science.Thibert, E., Bellot, H., Ravanat, X., Ousset, F., Pulfer, G., Naaim, M., Hagenmuller, P., Naaim-Bouvet, F., Faug, T., Nishimura, K., Ito, Y., Baroudi, D., Prokop, A., Schön, P., Soruco, A., Vincent, C., Limam, A., Héno, R. 2015. The full-scale avalanche test-site at Lautaret Pass (French Alps). Cold Reg. Sci. Technol., 115, 30-41. https://doi.org/10.1016/j.coldregions.2015.03.005Toro, E.F. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (Heidelberg). https://doi.org/10.1007/b79761Torralba-Conill, A. 2017. Implementation of a two-dimensional model for simulating Snow Avalanches. Universitat Politècnica de Catalunya.Torralba, A., Bladé, E., Oller, P. 2017. Implementació d'un model bidimensional per a simulació d'allaus de neu densa, in: V Jornades Tècniques de Neu i Allaus: Pyrenean Symposium on Snow and Avalanches. Ordino, Andorra.Voellmy, A. 1955. Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73, 15. http://doi.org/10.5169/seals-61891Wever, N., Vera Valero, C., Techel, F. 2018. Coupled Snow Cover and Avalanche Dynamics Simulations to Evaluate Wet Snow Avalanche Activity. J. Geophys. Res. Earth Surf., 123, 1772-1796. https://doi.org/10.1029/2017JF00451
Foregut microbiome in development of esophageal adenocarcinoma
Esophageal adenocarcinoma (EA), the type of cancer linked to heartburn due to gastroesophageal reflux diseases (GERD), has increased six fold in the past 30 years. This cannot currently be explained by the usual environmental or by host genetic factors. EA is the end result of a sequence of GERD-related diseases, preceded by reflux esophagitis (RE) and Barrett’s esophagus (BE). Preliminary studies by Pei and colleagues at NYU on elderly male veterans identified two types of microbiotas in the esophagus. Patients who carry the type II microbiota are >15 fold likely to have esophagitis and BE than those harboring the type I microbiota. In a small scale study, we also found that 3 of 3 cases of EA harbored the type II biota. The findings have opened a new approach to understanding the recent surge in the incidence of EA. 

Our long-term goal is to identify the cause of GERD sequence. The hypothesis to be tested is that changes in the foregut microbiome are associated with EA and its precursors, RE and BE in GERD sequence. We will conduct a case control study to demonstrate the microbiome disease association in every stage of GERD sequence, as well as analyze the trend in changes in the microbiome along disease progression toward EA, by two specific aims. Aim 1 is to conduct a comprehensive population survey of the foregut microbiome and demonstrate its association with GERD sequence. Furthermore, spatial relationship between the esophageal microbiota and upstream (mouth) and downstream (stomach) foregut microbiotas as well as temporal stability of the microbiome-disease association will also be examined. Aim 2 is to define the distal esophageal metagenome and demonstrate its association with GERD sequence. Detailed analyses will include pathway-disease and gene-disease associations. Archaea, fungi and viruses, if identified, also will be correlated with the diseases. A significant association between the foregut microbiome and GERD sequence, if demonstrated, will be the first step for eventually testing whether an abnormal microbiome is required for the development of the sequence of phenotypic changes toward EA. If EA and its precursors represent a microecological disease, treating the cause of GERD might become possible, for example, by normalizing the microbiota through use of antibiotics, probiotics, or prebiotics. Causative therapy of GERD could prevent its progression and reverse the current trend of increasing incidence of EA
Specific gene correction of the AGXT gene and direct cell reprogramming for the treatment of Primary Hyperoxaluria Type 1
P428
Primary Hyperoxaluria Type 1 (PH1) is an inherited rare metabolic liver disease caused by the deficiency in the alanine: glyoxylate aminotransferase enzyme (AGXT), involved in the glyoxylate metabolism. The only potentially curative treatment is organ transplantation. Thus, the development of new therapeutic approaches for the treatment of these patients appears as a priority.We propose the combination of site-specific gene correction and direct cell reprogramming for the generation of autologous phenotypically healthy induced hepatocytes (iHeps) from skin-derived fibroblast of PH1 patients. For the correction of AGXT mutations, we have designed specific gene editing tools to address gene correction by two different strategies, assisted by CRISPR/Cas9 system. Accurate specific point mutation correction (c.853T-C) has been achieved by homologydirected repair (HDR) with ssODN harbouring wild-type sequence. In the second strategy, an enhanced version ofAGXTcDNAhas been inserted near the transcription start codon of the endogenous gene, constituting an almost universal correction strategy for PH1 mutations. Direct reprogramming of fibroblasts has been conducted by overexpression of hepatic transcription factors and in vitro culture in defined media. In vitro characterization of healthy induced hepatocytes (iHeps) has demonstrated hepatic function of the reprogrammed cells. PH1 patient fibroblasts and , ,
- …