9 research outputs found

    Tocopherol and fatty acids content and proximal composition of four avocado cultivars (Persea Americana Mill)

    Get PDF
    Avocado pulp is widely regarded as a great source of edible oil containing fat-soluble vitamins and omega-3 fatty acids (FA). However, avocado peel and seeds are also good sources of edible oil and are less explored byproducts. This paper aimed at determining the proximal composition, FA and tocopherol contents of the pulp, peel, and seeds of Quintal, Fortuna, Margarida, and Hass avocado cultivars. The pulps presented high concentrations of oleic acid. In addition, peel and seeds presented lower omega-6/omega-3 ratios than the pulp. There was also a considerable amount of tocopherol in the peel and seeds, especially in Hass peel (230.7 mg/100 g). According to the results, the peel and seeds of avocado that are considered byproducts, can be utilized in food industry

    Statistics of the contact network in frictional and frictionless granular packings

    Get PDF
    Simulated granular packings with different particle friction coefficient mu are examined. The distribution of the particle-particle and particle-wall normal and tangential contact forces P(f) are computed and compared with existing experimental data. Here f equivalent to F/F-bar is the contact force F normalized by the average value F-bar. P(f) exhibits exponential-like decay at large forces, a plateau/peak near f = 1, with additional features at forces smaller than the average that depend on mu. Computations of the force-force spatial distribution function and the contact point radial distribution function indicate that correlations between forces are only weakly dependent on friction and decay rapidly beyond approximately three particle diameters. Distributions of the particle-particle contact angles show that the contact network is not isotropic and only weakly dependent on friction. High force-bearing structures, or force chains, do not play a dominant role in these three dimensional, unloaded packings.Comment: 11 pages, 13 figures, submitted to PR

    Structural transitions in granular packs: statistical mechanics and statistical geometry investigations

    Get PDF
    We investigate equal spheres packings generated from several experiments and from a large number of different numerical simulations. The structural organization of these disordered packings is studied in terms of the network of common neighbours. This geometrical analysis reveals sharp changes in the network's clustering occurring at the packing fractions (fraction of volume occupied by the spheres respect to the total volume, ρ\rho) corresponding to the so called Random Loose Packing limit (RLP, ρ0.555\rho \sim 0.555) and Random Close Packing limit (RCP, ρ0.645\rho \sim 0.645). At these packing fractions we also observe abrupt changes in the fluctuations of the portion of free volume around each sphere. We analyze such fluctuations by means of a statistical mechanics approach and we show that these anomalies are associated to sharp variations in a generalized thermodynamical variable which is the analogous for these a-thermal systems to the specific heat in thermal systems.Comment: 7 pages, 6 figure

    Analysis of damping in particle-reinforced superplastic zinc composites

    No full text
    The damping behavior of superplastic zinc (SPZ) participate composites with up to 42.5 vol pet spherical TiC particles (3 /im in diameter) was studied in the 25 °C to 330 °C temperature range using a low frequency torsion pendulum. The observed damping at room temperature was modeled as a combination of a diffusion-controlled dislocation relaxation and a grain boundary relaxation. Addition of TiC produced a lower dislocation damping contribution at room temperature, but this loss was offset by an increased contribution from the grain boundary relaxation. An increase in the elastic modulus was also observed for the composite. The validity of a theoretical model for predicting changes in the grain boundary relaxation peak temperature resulting from the introduction of large nondeforming particles was tested. This study demonstrates that grain sliding in SPZ alloys occurs by cooperative sliding of grain clusters containing three to five grains. The activation energy for this process was found to be 111 kJ/mole (1.15 eV), which is in agreement with previously published values for grain sliding in SPZ. A second internal friction peak at a temperature just below the eutectoid transformation temperature was also observed and this peak was associated with recrystallization
    corecore