343 research outputs found

    Interplay of the exciton and electron-hole plasma recombination on the photoluminescence dynamics in bulk GaAs

    Full text link
    We present a systematic study of the exciton/electron-hole plasma photoluminescence dynamics in bulk GaAs for various lattice temperatures and excitation densities. The competition between the exciton and electron-hole pair recombination dominates the onset of the luminescence. We show that the metal-to-insulator transition, induced by temperature and/or excitation density, can be directly monitored by the carrier dynamics and the time-resolved spectral characteristics of the light emission. The dependence on carrier density of the photoluminescence rise time is strongly modified around a lattice temperature of 49 K, corresponding to the exciton binding energy (4.2 meV). In a similar way, the rise-time dependence on lattice temperature undergoes a relatively abrupt change at an excitation density of 120-180x10^15 cm^-3, which is about five times greater than the calculated Mott density in GaAs taking into account many body corrections.Comment: 15 pages, 7 figures, submitted to Phys. Rev.

    Delay and distortion of slow light pulses by excitons in ZnO

    Get PDF
    Light pulses propagating through ZnO undergo distortions caused by both bound and free excitons. Numerous lines of bound excitons dissect the pulse and induce slowing of light around them, to the extend dependent on their nature. Exciton-polariton resonances determine the overall pulse delay and attenuation. The delay time of the higher-energy edge of a strongly curved light stripe approaches 1.6 ns at 3.374 eV with a 0.3 mm propagation length. Modelling the data of cw and time-of-flight spectroscopies has enabled us to determine the excitonic parameters, inherent for bulk ZnO. We reveal the restrictions on these parameters induced by the light attenuation, as well as a discrepancy between the parameters characterizing the surface and internal regions of the crystal.Comment: 4 pages, 4 figure

    Resonant spin-dependent electron coupling in a III-V/II-VI heterovalent double quantum well

    Full text link
    We report on design, fabrication, and magnetooptical studies of a III-V/II-VI hybrid structure containing a GaAs/AlGaAs/ZnSe/ZnCdMnSe double quantum well (QW). The structure design allows one to tune the QW levels into the resonance, thus facilitating penetration of the electron wave function from the diluted magnetic semiconductor ZnCdMnSe QW into the nonmagnetic GaAs QW and vice versa. Magneto-photoluminescence studies demonstrate level anticrossing and strong intermixing resulting in a drastic renormalization of the electron effective g factor, in perfect agreement with the energy level calculations.Comment: 4 pages, 5 Postscript figures, uses revtex

    Influence of Trapping on the Exciton Dynamics of Al_xGa_1-xAs Films

    Full text link
    We present a systematic study on the exciton relaxation in high purity AlGaAs epilayers. The time for the excitonic photoluminescence to reach its maximum intensity (t_max) shows a non-monotonic dependence on excitation density which is attributed to a competition between exciton localization and carrier-carrier scattering. A phenomenological four level model fully describes the influence of exciton localization on t_max. This localization effect is enhanced by the increase of the Al content in the alloy and disappears when localization is hindered by rising the lattice temperature above the exciton trapping energy.Comment: 4 pages, 3 figures, 16 ref

    Quantum corrections to the conductivity and Hall coefficient of a 2D electron gas in a dirty AlGaAs/GaAs/AlGaAs quantum well: transition from diffusive to ballistic regime

    Full text link
    We report an experimental study of the quantum corrections to the longitudinal conductivity and the Hall coefficient of a low mobility, high density two-dimensional two-dimensional electron gas in a AlGaAs/GaAs/AlGaAs quantum well in a wide temperature range (1.5 K - 110 K). This temperature range covers both the diffusive and the ballistic interaction regimes for our samples. It was therefore possible to study the crossover region for the longitudinal conductivity and the Hall effect

    Spin-flip Raman scattering of the Γ\Gamma-X mixed exciton in indirect band-gap (In,Al)As/AlAs quantum dots

    Full text link
    The band structure of type-I (In,Al)As/AlAs quantum dots with band gap energy exceeding 1.63 eV is indirect in momentum space, leading to long-lived exciton states with potential applications in quantum information. Optical access to these excitons is provided by mixing of the Γ\Gamma- and X-conduction band valleys, from which control of their spin states can be gained. This access is used here for studying the exciton spin-level structure by resonant spin-flip Raman scattering, allowing us to accurately measure the anisotropic hole and isotropic electron gg factors. The spin-flip mechanisms for the indirect exciton and its constituents as well as the underlying optical selection rules are determined. The spin-flip intensity is a reliable measure of the strength of Γ\Gamma-X-valley mixing, as evidenced by both experiment and theory.Comment: 5 pages, 3 figure
    corecore