6,075 research outputs found
Neural mechanisms of resistance to peer influence in early adolescence
During the shift from a parent-dependent child to a fully autonomous adult, peers take on a significant role in shaping the adolescent’s behaviour. Peer-derived influences are not always positive, however. Here we explore neural correlates of inter-individual differences in the probability of resisting peer influence in early adolescence. Using functional magnetic-resonance imaging (fMRI), we found striking differences between 10-year old children with high and low resistance to peer influence in their brain activity during observation of angry hand-movements and angry facial expressions: compared with subjects with low resistance to peer influence, individuals with high resistance showed a highly coordinated brain activity in neural systems underlying perception of action and decision making. These findings suggest that the probability of resisting peer influence depends on neural interactions during observation of emotion-laden actions
Application of density dependent parametrization models to asymmetric nuclear matter
Density dependent parametrization models of the nucleon-meson effective
couplings, including the isovector scalar \delta-field, are applied to
asymmetric nuclear matter. The nuclear equation of state and the neutron star
properties are studied in an effective Lagrangian density approach, using the
relativistic mean field hadron theory. It is known that the introduction of a
\delta-meson in the constant coupling scheme leads to an increase of the
symmetry energy at high density and so to larger neutron star masses, in a pure
nucleon-lepton scheme. We use here a more microscopic density dependent model
of the nucleon-meson couplings to study the properties of neutron star matter
and to re-examine the \delta-field effects in asymmetric nuclear matter. Our
calculations show that, due to the increase of the effective \delta coupling at
high density, with density dependent couplings the neutron star masses in fact
can be even reduced.Comment: 5 pages, 4 figure
Consistent thermodynamic derivative estimates for tabular equations of state
Numerical simulations of compressible fluid flows require an equation of
state (EOS) to relate the thermodynamic variables of density, internal energy,
temperature, and pressure. A valid EOS must satisfy the thermodynamic
conditions of consistency (derivation from a free energy) and stability
(positive sound speed squared). When phase transitions are significant, the EOS
is complicated and can only be specified in a table. For tabular EOS's such as
SESAME from Los Alamos National Laboratory, the consistency and stability
conditions take the form of a differential equation relating the derivatives of
pressure and energy as functions of temperature and density, along with
positivity constraints. Typical software interfaces to such tables based on
polynomial or rational interpolants compute derivatives of pressure and energy
and may enforce the stability conditions, but do not enforce the consistency
condition and its derivatives. We describe a new type of table interface based
on a constrained local least squares regression technique. It is applied to
several SESAME EOS's showing how the consistency condition can be satisfied to
round-off while computing first and second derivatives with demonstrated
second-order convergence. An improvement of 14 orders of magnitude over
conventional derivatives is demonstrated, although the new method is apparently
two orders of magnitude slower, due to the fact that every evaluation requires
solving an 11-dimensional nonlinear system.Comment: 29 pages, 9 figures, 16 references, submitted to Phys Rev
Phase transitions of hadronic to quark matter at finite T and \mu_B
The phase transition of hadronic to quark matter and the boundaries of the
mixed hadron-quark coexistence phase are studied within the two Equation of
State (EoS) model. The relativistic effective mean field approach with constant
and density dependent meson-nucleon couplings is used to describe hadronic
matter, and the MIT Bag model is adopted to describe quark matter. The
boundaries of the mixed phase for different Bag constants are obtained solving
the Gibbs equations.
We notice that the dependence on the Bag parameter of the critical
temperatures (at zero chemical potential) can be well reproduced by a fermion
ultrarelativistic quark gas model, without contribution from the hadron part.
At variance the critical chemical potentials (at zero temperature) are very
sensitive to the EoS of the hadron sector. Hence the study of the hadronic EoS
is much more relevant for the determination of the transition to the
quark-gluon-plasma at finite baryon density and low-T. Moreover in the low
temperature and finite chemical potential region no solutions of the Gibbs
conditions are existing for small Bag constant values, B < (135 MeV)^4. Isospin
effects in asymmetric matter appear relevant in the high chemical potential
regions at lower temperatures, of interest for the inner core properties of
neutron stars and for heavy ion collisions at intermediate energies.Comment: 24 pages and 16 figures (revtex4
Fault Friction During Simulated Seismic Slip Pulses
Theoretical studies predict that during earthquake rupture faults slide at non-constant slip velocity, however it is not clear which source time functions are compatible with the high velocity rheology of earthquake faults. Here we present results from high velocity friction experiments with non-constant velocity history, employing a well-known seismic source solution compatible with earthquake source kinematics. The evolution of friction in experiments shows a strong dependence on the applied slip history, and parameters relevant to the energetics of faulting scale with the impulsiveness of the applied slip function. When comparing constitutive models of strength against our experimental results we demonstrate that the evolution of fault strength is directly controlled by the temperature evolution on and off the fault. Flash heating predicts weakening behavior at short timescales, but at larger timescales strength is better predicted by a viscous creep rheology. We use a steady-state slip pulse to test the compatibility of our strength measurements at imposed slip rate history with the stress predicted from elastodynamic equilibrium. Whilst some compatibility is observed, the strength evolution indicates that slip acceleration and deceleration might be more rapid than that imposed in our experiments
SRL pathogenicity island contributes to the metabolism of D-aspartate via an aspartate racemase in Shigella flexneri YSH6000
In recent years, multidrug resistance of Shigella strains associated with genetic elements like pathogenicity islands, have become a public health problem. The Shigella resistance locus pathogenicity island (SRL PAI) of S. flexneri 2a harbors a 16Kbp region that contributes to the multidrug resistance phenotype. However, there is not much information about other functions such as metabolic, physiologic or ecological ones. For that, wild type S. flexneri YSH6000 strain, and its spontaneous SRL PAI mutant, 1363, were used to study the contribution of the island in different growth conditions. Interestingly, when both strains were compared by the Phenotype Microarrays, the ability to metabolize D-aspartic acid as a carbon source was detected in the wild type strain but not in the mutant. When D-aspartate was added to minimal medium with other carbon sources such as mannose or mannitol, the SRL PAI-positive strain was able to metabolize it, while the SRL PAI-negative strain did not. In order to identify the genetic elements responsible for this phenotype, a bioinformatic analysis was performed and two genes belonging to SRL PAI were found: orf8, coding for a putative aspartate racemase, and orf9, coding for a transporter. Thus, it was possible to measure, by an indirect analysis of racemization activity in minimal medium supplemented only with D-aspartate, that YSH6000 strain was able to transform the D-form into L-, while the mutant was impaired to do it. When the orf8-orf9 region from SRL island was transformed into S. flexneri and S. sonnei SRL PAI-negative strains, the phenotype was restored. Also, when single genes were cloned into plasmids, no complementation was observed. Our results strongly suggest that the aspartate racemase and the transporter encoded in the SRL pathogenicity island are important for bacterial survival in environments rich in D-aspartate
What is the impact of intraoperative microscope-integrated oct in ophthalmic surgery? Relevant applications and outcomes. a systematic review
Background: Optical coherence tomography (OCT) has recently been introduced in the operating theatre. The aim of this review is to present the actual role of microscope-integrated optical coherence tomography (MI-OCT) in ophthalmology. Method: A total of 314 studies were identified, following a literature search adhering to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. After full-text evaluation, 81 studies discussing MI-OCT applications in ophthalmology were included. Results: At present, three microscope-integrated optical coherence tomography systems are commercially available. MI-OCT can help anterior and posterior segment surgeons in the decision-making process, providing direct visualization of anatomic planes before and after surgical manoeuvres, assisting in complex cases, and detecting or confirming intraoperative complications. Applications range from corneal transplant to macular surgery, including cataract surgery, glaucoma surgery, paediatric examination, proliferative diabetic retinopathy surgery, and retinal detachment surgery. Conclusion: The use of MI-OCT in ophthalmic surgery is becoming increasingly prevalent and has been applied in almost all procedures. However, there are still limitations to be overcome and the technology involved remains difficult to access and use
Noninvasive Ocular Surface Workup in Patients with Meibomian Gland Dysfunction Using Microwave-Heated Eye Bag
Purpose: To report the outcomes of a novel microwave heating device (Blepha EyeBag®) used serially for the treatment of meibomian gland dysfunction (MGD).
Patients and Methods: This prospective single center study was conducted at University Magna Graecia of Catanzaro. Patients were instructed to apply the compress twice daily for 15 days and once per day every two days, as reported in the package insert. Outcome measures were i) ocular surface disease index (OSDI) score, ii) tear meniscus height (TMH), iii) non-invasive keratograph break-up time (NIKBUT) (first and average), iv) meiboscore, v) bulbar redness. Evaluations were performed at baseline (T0) after 15 days (T1) and after 45 days of therapy (T2).
Results: Overall, 19 patients with MGD (8 males, 11 females; mean age 64.58 ± 9.72 years) were included. The mean value of OSDI score showed a significant decrease from 28.16 ± 17.46 at T0 to 13.69 ± 7.62 at T2 (p=0.008). The mean value of NIKBUT first significantly increased from 6.67 ± 3.51 seconds (s) at T0 to 10.46 ± 4.64 at T2 (p=0.0121); in parallel, the mean value of NIKBUT average increased significantly from 11.09 ± 4.15 s at T0 to 14.95 ± 4.85 at T2 (p=0.0049). No significant differences were detected at each time point for bulbar redness, meiboscore and TMH. Throughout the entire study, no adverse events were recorded.
Conclusion: The microwave-heated eye bag treatment is both safe and effective for treatment of MGD, being able to significantly ameliorate both patient-reported symptoms and tear film stability
Prediction Interval Development for Wind-Tunnel Balance Check-Loading
Results from the Facility Analysis Verification and Operational Reliability project revealed a critical gap in capability in ground-based aeronautics research applications. Without a standardized process for check-loading the wind-tunnel balance or the model system, the quality of the aerodynamic force data collected varied significantly between facilities. A prediction interval is required in order to confirm a check-loading. The prediction interval provides an expected upper and lower bound on balance load prediction at a given confidence level. A method has been developed which accounts for sources of variability due to calibration and check-load application. The prediction interval method of calculation and a case study demonstrating its use is provided. Validation of the methods is demonstrated for the case study based on the probability of capture of confirmation points
- …