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Results from the Facility Analysis Verification and Operational Reliability project re-

vealed a critical gap in capability in ground-based aeronautics research applications.

Without a standardized process for check-loading the wind-tunnel balance or the model

system, the quality of the aerodynamic force data collected varied significantly between

facilities. A prediction interval is required in order to confirm a check-loading. The

prediction interval provides an expected upper and lower bound on balance load pre-

diction at a given confidence level. A method has been developed which accounts for

sources of variability due to calibration and check-load application. The prediction

interval method of calculation and a case study demonstrating its use is provided. Val-

idation of the methods is demonstrated for the case study based on the probability of

capture of confirmation points.
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I. Introduction

A wind-tunnel test program often involves a complicated model installation process which may

include installation of hardware that bridges the metric to non-metric gap. Clearances between

non-metric supports and the balance supported test article may involve tight tolerances such that

support deflections under aerodynamic loading or large environmental changes that may lead to

contact. Even in the case of a simple installation, it is always prudent to apply known forces and

moments to a model/balance and observe that these loads are being correctly measured prior to

testing - a check-loading [1]. Current practices for confirmation of check-loads are typically informal

and involve using the standard deviation of the calibration residuals with a coverage factor based

on the desired confidence. A more mathematically defensible bound on the prediction of loads may

be provided by a prediction interval, which contains two general sources of uncertainty. The first

is that due to the balance uncertainty obtained during the balance calibration. The second is the

uncertainty in the applied loads created by the check-load hardware.

II. Estimates of Uncertainty in Balance Responses

Estimates of uncertainty in load measurement from the balance are obtained during the calibra-

tion process. Estimates include the uncertainty in setting the applied loads due to the calibration

hardware used, as well as the error associated with the balance reading of the loads through the

calibration model. Set-point errors as well as any measurement system error are also included in

these estimates. A rigorous, statistical approach to the calibration process provides an estimate

for the variance in each of the component bridge voltage responses through the Mean Square for

Error (MSE) available from the Analysis of Variance (ANOVA). The developed regression model

depends on the design point load combinations, expressed here in coded units (x). A typical model

used with monolithic moment balances contains at least primary sensitivities, 1st order interactions,

two-factor interactions, and pure quadratics as shown in Eq. (1) [1].

yk = β0 +

6∑
i=1

βixi +

6∑
j=1

∑
i<j

βijxixj +

6∑
i=1

βiix
2
i + ε (1)

The response is the bridge voltage of the component of interest, y. The x’s in the model represent

the applied loads given in coded factors. Each estimated term in the regression model (βi) is
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represented as a column in the calibration model matrix X used during the regression calculations.

The calibration model matrix X contains only statistically significant terms, tested at the desired

significance level (α). One challenge faced in using calibration models is that the user ultimately

requires the output in force and moment engineering units, not voltages. The calibration model is

y = f (x) whereas the desired output is x = f (y).

A prediction interval is a bound on the predicted response for a given applied loading - for

instance a confirmation point during calibration. The vector x0 is used to define a single multi-

component load combination, expanded to include all terms in the calibration regression model.

The t-statistic is computed for a given level of confidence (1− α), and (n− p) residual degrees of

freedom. There are n unique calibration design points (or load combinations) in the calibration

design and p parameters in the resulting regression model. The prediction interval for a single

confirmation point evaluated during calibration may then be expressed as Eq. (2) [2, 3].

ŷ (x0)± tα/2,n−p

√
MSE

(
1 + x′0 (X

′X)
−1

x0

)
(2)

This prediction interval for response voltage can then be expressed as an upper and lower bound

for forces and moments by computing the loads through the balance calibration model. This model

is self-consistent for use during calibration, but the bias error (expressed as a variance) associated

with the uncertainty in applied loads due to the calibration hardware (σ2
bias-cal) must be added to the

random component (MSE) for the overall uncertainty [4, 5]. Note that the bias must be expressed

as a voltage here for unit consistency.

ŷ (x0)± tα/2,n−p

√
(MSE+ σ2

bias-cal)
(
1 + x′0 (X

′X)
−1

x0

)
(3)

III. Uncertainty in Loads Applied by the Check-Load Hardware

The check-loading hardware is used to apply known total loads to the balance/model including

the loads due to the hardware. The mass properties of the check-load hardware and all dimensions

that define the moment arms should be measured with the highest possible precision. A software

program can then be developed for incorporating these precise measurements to calculate the loads
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applied to the test article by the check-load hardware (including tare weights). A method is now

required to combine all the individual uncertainties. A Monte Carlo simulation allows integration

of all individual uncertainties including all dimension tolerances, and the uncertainty in the applied

and tare weights [4]. An estimate of the standard deviation is required for each source of uncertainty.

The Monte Carlo simulation models each error source as a normal distribution using the mean value

of the parameter and standard deviations. Overall standard deviations in each response are then

calculated for each of the runs to provide an absolute bias estimate expressed in units of response

voltage for the applied loads (σ2
bias-applied). Details are shown in the case study that follows.

IV. Check-Load Prediction Interval for Total Uncertainty

The prediction interval used for check-loading expressed as a balance bridge output is given as

Eq. (4). It is based on the development presented in Reference 3 but includes the additional bias

due to the applied loads via the check-load hardware and the bias from the calibration [5].

ŷ (x0)± tα/2,n−p

√(
σ2

bias-applied +MSE+ σ2
bias-cal

)(
1 + x′0 (X

′X)
−1

x0

)
(4)

This interval now allows the user to choose a load combination, apply it through the check-load

hardware, read the balance response and determine if this response captures the applied load in

the prediction interval. The balance response is a voltage and many may feel that it is easier to

interpret a response in the engineering units for a force and moment. The calibration matrix may be

used to back calculate the force and moment values in engineering units using the method outlined

in Reference 1.

V. Case Study: The NASA Langley In-Situ Load System

Specialized hardware has recently been developed at NASA Langley Research Center (LaRC)

to provide rapid, in-situ validation of wind-tunnel model balance loads in the wind tunnel just prior

to testing. The case study presented here coupled this new hardware with a typical balance used

in the NASA LaRC National Transonic Facility (NTF). The study involved loading the balance

using a calibration fixture on the metric end while supporting the balance on a system capable of

adjusting both pitch and roll orientation on the non-metric end.
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A. The ILS Concept

The In-Situ Load System (ILS) is a new system designed at NASA LaRC to help address the

issues surrounding a system-level validation or calibration of a wind-tunnel model system (WTMS)

[6]. Together, the aircraft model, model sting, balance, angle measurement system, and other

instrumentation make up the WTMS. The ILS incorporates the rigorous methodology described

above for quantifying uncertainties to standardize the check-loading process. The ILS concept has

origins in the NASA LaRC Single-Vector Calibration System (SVS), which exploits the use of a

single deadweight loading to create variable, multi-component loads through rotation and offset of

the point of load application with respect to the balance moment center (BMC) [7]. Fig. 1 shows

the ILS and illustrates the principles of operation. The ILS has a two degree-of-freedom joint which

Fig. 1 The ILS Mounted to a Balance Calibration Fixture

allows the applied load to remain aligned with the gravitational vector. The upper bearing mount

supports two bearings which in turn support the bearing cross shaft. The bearing cross contains a

third bearing which is tied to the lower bearing mount. Loads are applied through a weight hanger

attached to the lower bearing mount. For the purpose of this study, the ILS was attached directly
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to a balance calibration fixture. Offsets in the x- and y-direction are afforded through multiple

mounting holes in the ILS mount and the fixture (axes shown in Fig. 2). The balance is inserted

in the fixture block and supported and oriented on the non-metric end by allowing movement in

both the pitch and roll axes. An Angle Measurement System (AMS) is installed to the front of the

calibration fixture to provide the orientation of the balance with respect to the gravitational vector.

The AMS package consists of three Q-flex accelerometers that are oriented orthogonally [8].

B. Loads Applied by the ILS

The design of the ILS hardware ensures that the load vector coincides with the gravity vector.

Based on the balance coordinate system, the load vector is resolved into the three forces. Fbal is

the vector of the three forces defined as [Fx Fy Fz]
′.

Fbal = Fappg (5)

where Fapp is the magnitude of the applied load vector, and g is the gravity vector describing the

orientation of the balance expressed as [gx gy gz]
′. For a constant Fapp, the magnitude of the three

forces is varied by changing the orientation of the balance in pitch and roll. The components of the

gravity vector are expressed in terms of g’s. The moments applied to the balance are not only a

Fig. 2 Balance Moment Center Reference Axes

function of the applied load vector and the orientation of the balance, but also the distance of the

load point from the BMC. The BMC is an imaginary point on the balance that is used to define

the balance coordinate frame, and is the point by which all forces and moments are referenced.

The distance from the BMC is a vector expressed as dBMC = [xBMC yBMC zBMC ]
′, where the sign
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convention is defined in Fig. 2. The applied moments about BMC, Mbal, are the cross product of

the distance vector and the balance force vector, or

Mbal = dBMC × Fbal (6)

where Mbal is the vector of the three moments defined as [Mx My Mz]
′ and Fbal is given by Eq. 5.

C. The NTF-113C Balance

The NTF-113C balance is a single-piece, six-component moment balance designed for full-span

testing at the NTF. Table 1 shows the full-scale design loads for the NTF-113C. The NTF-113C

Table 1 NTF-113C Balance Design Loads

Balance Aerodynamic Design Load

Component Component English Units, lbs. or in-lbs. Metric Units, N or N-m

Fz NF 6,520 29,002

Fx AF 400 1,779

My PM 12,800 1,446

Mx RM 8,150 920

Mz YM 6,400 723

Fy SF 4,000 17,792

was selected for this study since the ILS has a maximum applied load limit of 5,000 lbs., which is 77

percent of the full-scale capacity of normal force. Full-scale loads are possible with the remaining five

components using the ILS. The bridge electrical configuration is such that the strain-gage bridges

are in a force-balance format (NF1/NF2, SF1/SF2, RM, AF), where the beam elements are located

in two cages equally spaced at axial stations forward and aft of the BMC as shown in the overview

drawing of Fig. 3

D. The ILS Check-Load Study

The load schedule shown in Table 2 was used in testing the ILS hardware with the NTF-113C

balance. The applied load was fixed at 2,500 lbs for the testing since a lower value of Fapp allowed
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Fig. 3 NTF-113C Balance Overview

for a larger volume of the six-dimensional space to be explored. By increasing Fapp, the design

Table 2 ILS Check-Load Schedule for NTF-113C

Point No. Load Point gx gy gz Fx, Fy, Fz, Mx, My, Mz, Fapp,

lbs. lbs. lbs. in-lbs. in-lbs. in-lbs. lbs.

1* 1 0.028 0.249 0.968 70 623 2420 -6 -4833 1244 2500

2 1 0.131 0.395 0.909 328 988 2273 -3531 -2244 1485 2500

3 2 0.131 0.395 0.909 328 988 2273 -3531 2870 -738 2500

4 3 -0.113 0.332 0.937 -283 830 2343 -1992 2796 -1232 2500

5* 4 0.057 -0.136 0.989 143 -340 2473 2975 -4313 -765 2500

6 4 0.087 0.130 0.988 218 325 2470 -2844 -3650 731 2500

7 5 -0.070 -0.122 0.990 -175 -305 2475 2669 -1531 0 2500

8* 5 0.000 0.000 1.000 0 0 2500 0 0 0 2500

9 6 -0.122 0.138 0.983 -305 345 2458 -3019 2862 -776 2500

10* 6 -0.057 0.000 0.998 -143 0 2495 0 4363 0 2500

11 7 0.113 -0.332 0.937 283 -830 2343 1992 -2796 -1232 2500

12 8 0.131 -0.395 0.909 328 -988 2273 3528 2870 737 2500

13 9 -0.113 -0.332 0.937 -283 -830 2343 1992 2796 1232 2500

*Note: Asterisk indicates a load combination that is replicated for estimate of experimental error

limits of the balance would have been exceeded at the same orientations given in Table 2. The load

schedule included all nine load points and primarily focused on complex, multi-component loads.
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Simple combinations, such as a single-component force, provided a baseline to compare the ILS

hardware to readily available hardware, like a knife-edge weight hanger. Replicates of some load

combinations were performed to estimate the pure experimental error [2]. Additionally, the load

schedule was replicated over several days to assess any day-to-day variability.

VI. Determination of Prediction Intervals

A. Uncertainty in the NTF-113C Balance Responses

The first and typically dominant component for estimating balance calibration uncertainties is

the residual error from the mathematical model, expressed as MSE. The NTF-113C is calibrated

using the NASA LaRC SVS and features a modified Central Composite Design (CCD) for specifying

the load schedule. This classic design is perhaps the most popular design for estimating a second-

order response model in many fields. The excellent prediction variance properties and efficient run

schedule have been the subject of much discussion in the literature [2, 3]. The mean square for

error is an overall variance estimate resulting from the analysis of variance (ANOVA) and is given

in the calibration report for a balance. Values for MSE and residual degrees of freedom (df) for all

components of the the NTF-113C are given in Table 3. Bias error associated with the uncertainty

Table 3 NTF-113C Calibration Model Residual Statistics

Fx Fy Fz Mx My Mz

Residual df (n− p) 45 49 50 52 55 54

MSE (µV/V ) 2.680 0.245 0.198 0.485 0.997 0.762

in applied loads due to the calibration hardware must be added to MSE for the overall uncertainty.

The uncertainty in loads applied by the SVS has been described in Reference 5. Uncertainties

in loads applied by the ILS to the NTF-113C balance were computed using this method and are

presented in Table 4.
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Table 4 Estimated Bias Errors due to Calibration with SVS

Fx Fy Fz Mx My Mz

Avg Variance (lbs.; in-lbs.)2 0.3750 0.3803 0.3386 8.0715 7.5861 18.0000

Avg Std Dev (lbs.; in-lbs.) 0.6124 0.6167 0.5819 2.8410 2.7543 4.2430

Max Std Dev (lbs.; in-lbs.) 0.6833 0.7326 0.6692 4.3688 4.5272 4.7060

Min Std Dev (lbs.; in-lbs.) 0.0817 0.0815 0.0872 0.0832 0.0581 0.2852

B. Uncertainty in Loads Applied by the ILS

The weight of the ILS hardware was not subtracted by a tare sequence, but rather included in

the calculation of the desired applied load. This requires precise knowledge of the weight and center

of gravity of the ILS hardware, which were experimentally determined for both the ILS Mount

and remaining ILS subassembly. The mount and the ILS subassembly are moved independently

to generate load combinations so that their mass properties were determined separately. The ILS

Subassembly consists of the Upper Bearing Mount and the Bearing Cross as seen in Fig. 1. The

details of the ILS geometry and measured mass properties may be found in Reference 6. It was

assumed that the force due to the lower bearing mount acts through the load point and therefore

the location of the center of gravity is not required. The additional applied force to the balance

is the summation of the deadweight load and the weight of the ILS hardware. In addition to

precisely determining the mass properties, all critical dimensions that define the moment arms from

BMC were evaluated using a calibrated coordinate measuring machine (CMM). The uncertainties

associated with all involved measurements are summarized in Table 5.

A Monte-Carlo simulation was developed to combine all the uncertainties, including the toler-

ance of the CMM-based measurements, uncertainty in the mass of the applied and tare weights, and

the uncertainty in the AMS measurements of the gravity vector. The software program incorpo-

rated the precise measurements, perturbed with an assumed normal distribution using the standard

deviation estimates of Table 5, to calculate the forces at the BMC including the tare weight applied

to the balance fixture by the ILS. When using the ILS, uncertainty in the forces is primarily a

function of the uncertainty in determining the g-vector. The uncertainty in the applied moments is
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Table 5 Elemental Error Sources for the In-Situ Load System

Symbol Description Standard Deviation Units

Ugx Projection of Gravity vector on x-axis 0.0001 g’s

Ugy Projection of Gravity vector on y-axis 0.0001 g’s

Ugz Projection of Gravity vector on z-axis 0.0001 g’s

UxBMC , UyBMC , UzBMC CMM Linear Measurements 0.0002 in.

UCGx Center of Gravity Measurement on x-axis 0.0014 in.

UCGy Center of Gravity Measurement on y-axis 0.0025 in.

UCGz Center of Gravity Measurement on z-axis 0.0011 in.

UFW Force due to Precision Weights 0.01% F.S. lbs.

Force due to ILS Components < 5 lbs. 0.00022 lbs.

Force due to ILS Components > 5 lbs. 0.0022 lbs.

a function of the moment arm lengths in addition to the forces and as a result, additional variability

is introduced. A pseudo-code for the Monte Carlo approach for one design point (load combination)

is given below with comments.

Begin

For i=1 to 1000 iterations

%% Uncertainty added to Gravity Vector, nrand computes a random value from a normal

%% distribution using a standard deviation of Ug and mean of zero.

G=[gx,gy,gz]+nrand(Ug)

%% Uncertainty added to distances from BMC to ILS Mount (mt) and ILS subassembly (sub)

dBMCmt=[CGx,CGy ,CGz]mt + [nrand(UCGx,UCGy,UCGz)]mt + [xBMC ,yBMC ,zBMC]mt

+ [nrand(Ux,Uy,Uz)]mt
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dBMCsub=[CGx,CGy ,CGz]sub + [nrand(UCGx,UCGy,UCGz)]sub + [xBMC ,yBMC ,zBMC]sub

+ [nrand(Ux,Uy,Uz)]sub

%% Uncertainty added to Forces of Mount and Subassembly, Force at Balance Calculated

%% (bal)

Fmt= [Wmt+nrand(UFs)]G

Fsub= [Wsub + nrand(UFs or UFl)]G

Fbal= Fmt+Fsub

%% Moments at BMC Calculated

Mmt = dBMCmt X Fmt

Msub = dBMCsub X Fsub

Mbal= Mmt + Msub

%% Store Mbal and Fbal in array

If i > 1000 go to *

If i < 1000 begin next iteration i=i+1

%% *Calculate the mean and standard deviation of each component force and moment using

%% the 1000 trials

End

Squaring the overall standard deviation (σ) in each response calculated for each of the runs provides

an absolute bias estimate for the ILS applied loads, σ2
bias-applied. Each orientation of the ILS pro-

vides a different load combination (design point) and requires a separate Monte Carlo simulation.

12



Results from this study are summarized in Table 6 with upper and lower bounds from different load

combinations. The most accurate value for σ2
bias-applied is found by using the computed value at

the given orientation. An engineering compromise may be to look at the bias over all orientations

tested and take the average. This was the approach taken in this case study using the orientations

of Table 2; average values are given in Table 6. Conversion from calculated forces and moments

Table 6 Bias in ILS Applied Loads over Study Design Points

Fx Fy Fz Mx My Mz

Avg Variance (lbs.; in-lbs.)2 0.0627 0.3918 0.1184 5.5590 0.0653 5.3490

Avg Std Dev (lbs.; in-lbs.) 0.2503 0.6259 0.3441 2.3580 0.2556 2.3130

Max Std Dev (lbs.; in-lbs.) 0.2676 0.8999 0.3720 2.7400 0.2834 2.5480

Min Std Dev (lbs.; in-lbs.) 0.2293 0.0006 0.3152 2.1380 0.2341 2.1390

in engineering units to response voltages is then done using balance primary sensitivities. Table 6

provides a summary of computed bias values averaged over the complete range of ILS orientations

for this study. The average variance (first row of Table 6) was used for σ2
bias-applied in subsequent

prediction interval calculations.

C. Prediction Interval Capture Probability for the ILS Case Study

All terms in the prediction interval of Eq. (4) are now known. The user may choose to convert

the response voltages back to units of force and moment for ease of interpretation. Use of balance

primary sensitivities for this conversion represents a reasonable engineering compromise.

The load combinations given in Table 2 were executed and replicated over four days on the

NTF-113C balance. Responses from the six strain-gage bridges were recorded and the six balance

loads were estimated using the iterative balance reduction process [1]. The most recent calibration

matrix for the NTF-113C balance was used to estimate the balance loads. Once the six balance

loads were estimated, prediction intervals based on Eq. (4) were applied to the estimated loads. The

intervals were compared with the physics-bases calculations of the applied load to check whether

the applied load fell within the six prediction intervals. The acceptable error rate, α, in Eq. (4) was
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set to 0.05, which yielded a 95-percent confidence level for a single prediction interval. The overall

probability that the six prediction intervals simultaneously captured the known physics-based load

was at least 1 − (6× 0.05) = 0.70 or 70 percent. The Bonferroni adjustment to the error rate was

made to account for the simultaneous nature of the prediction intervals [9]. For an overall capture

probability of 95 percent, the new error rate, α∗, based on Bonferroni’s method was set to α∗ = α/6

and α∗ replaced α in Eq. (4). Table 7 summarizes the capture probabilities from the ILS check-load

Table 7 Summary of Capture Probabilities from Check-Load Study

95% Prediction Interval 2σ Calibration

Date Total Number of Number of Captured Percent Number of Captured Percent

Combinations Points Captured Points Captured

07/11/2013 156 150 96.2 142 91.0

07/12/2013 240 236 98.3 212 88.3

07/15/2013 126 119 94.4 113 89.7

07/23/2013 126 121 96.0 106 84.1

Total 648 626 96.6 573 88.4

testing. A total of 108 load combinations (108× 6 = 648 points) were performed over the four-day

period. The last column of Table 7 compares the capture rate for the two standard deviations of

the back-computed residuals to the capture rate from the newly-derived prediction interval method.

This comparison is made due to the perceived popularity of using the former interval for check-

loading. The overall capture rate using the back-computed 2σ method was 88.4 percent versus

the prediction interval presented here, which captured 96.6 percent of the check-load points. As

mentioned previously, the capture rate was expected to be at least 95 percent.

Table 8 shows a representative single check-load and the comparison between the actual applied

load and the estimated load from the six balance bridges. The load combination in the example is

point number 12 in Table 2. It is worth noting that applying the exact combination as stated in

Table 2 is not important since an AMS measures the orientation of the balance, and the applied

forces and moments are easily calculated from the physics-based equations given by Eqs. (5) and

(6). In this example, the actual load for five of the six components falls within the prediction
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Table 8 Example Comparison of Actual and Estimated Loads with Prediction Intervals

Component Estimated Actual 95% Prediction 2σ Calibration

Load, Load, Interval Half-Width, Interval Half-Width,

lbs. or in-lbs. lbs. or in-lbs. lbs. or in-lbs. lbs. or in-lbs.

Fx 324.60 325.10 2.90 1.32

Fy
2 -986.39 -982.55 3.88 2.40

Fz
2 2277.47 2275.00 4.71 2.10

Mx 3497.50 3497.93 28.94 20.44

My 2817.59 2821.24 28.63 14.18

Mz
1,2 721.83 742.39 19.44 9.00

*Note: A 1 indicates an applied load outside of the 95% prediction interval and a 2 indicates an applied

load outside of the 2σ calibration interval

intervals on the estimated load. It is noted that the prediction intervals for the moments are larger

due to additional uncertainties in the moment arm lengths. Table 8 also provides a comparison of

the prediction interval half-widths of this study and half-width intervals computed using two times

the standard deviation of the back-calculated residuals [1]. Using the 2σ calibration intervals, only

three of the six components were captured.

VII. Conclusion

The development of the ILS hardware naturally led to the need for a rigorous estimate of the

prediction interval for a given combined loading. Accounting for all of the contributing sources of

variation for a prediction interval calculation represents a formidable accounting task. The honest

assessment of the newly-derived prediction interval provided a capture rate for loadings tested of

over 96 percent. The use of bias values derived from averages over a range of the applied load

combinations used during calibration and check-loading may prove adequate based on these initial

results. Future work may address the potential differences in prediction interval point capture

afforded through detailed bias assessments at each individual load combination. In addition, the

method should be proven with other balance and check-load hardware combinations.
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