53 research outputs found

    Modulation of cortical motor outputs by the symbolic meaning of visual stimuli.

    Get PDF
    Abstract The observation of an action modulates motor cortical outputs in specific ways, in part through mediation of the mirror neuron system. Sometimes we infer a meaning to an observed action based on integration of the actual percept with memories. Here, we conducted a series of experiments in healthy adults to investigate whether such inferred meanings can also modulate motor cortical outputs in specific ways. We show that brief observation of a neutral stimulus mimicking a hand does not significantly modulate motor cortical excitability (Study 1) although, after prolonged exposure, it can lead to a relatively nonspecific modulation (Study 2). However, when such a neutral stimulus is preceded by exposure to a hand stimulus, the latter appears to serve as a prime, perhaps enabling meaning to the neutral stimulus, which then modulates motor cortical excitability in accordance with mirror neuron-driving properties (Studies 2 and 3). Overall results suggest that a symbolic value ascribed to an otherwise neutral stimulus can modulate motor cortical outputs, revealing the influence of top-down inputs on the mirror neuron system. These findings indicate a novel aspect of the human mirror neuron system: an otherwise neutral stimulus can acquire specific mirror neuron-driving properties in the absence of a direct association between motor practice and perception. This significant malleability in the way that the mirror neuron system can code otherwise meaningless (i.e. arbitrarily associated) stimuli may contribute to coding communicative signals such as language. This may represent a mirror neuron system feature that is unique to humans

    Associations between repetitive negative thinking and resting-state network segregation among healthy middle-aged adults

    Get PDF
    Background: Repetitive Negative Thinking (RNT) includes negative thoughts about the future and past, and is a risk factor for depression and anxiety. Prefrontal and anterior cingulate cortices have been linked to RNT but several regions within large-scale networks are also involved, the efficiency of which depends on their ability to remain segregated. Methods: Associations between RNT and system segregation (SyS) of the Anterior Salience Network (ASN), Default Mode Network (DMN) and Executive Control Network (ECN) were explored in healthy middle-aged adults (N = 341), after undergoing resting-state functional magnetic resonance imaging. Regression analyses were conducted with RNT as outcome variable. Explanatory variables were: SyS, depression, emotional stability, cognitive complaints, age and sex. Results: Analyses indicated that RNT was associated with depression, emotional stability, cognitive complaints, age and segregation of the left ECN (LECN) and ASN. Further, the ventral DMN (vDMN) presented higher connectivity with the ASN and decreased connectivity with the LECN, as a function of RNT. Conclusion: Higher levels of perseverative thinking were related to increased segregation of the LECN and decreased segregation of the ASN. The dissociative connectivity of these networks with the vDMN may partially account for poorer cognitive control and increased self-referential processes characteristic of RNT

    Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation

    Get PDF
    OBJECTIVE: Repetitive application of peripheral electrical stimuli paired with transcranial magnetic stimulation (rTMS) of M1 cortex at low frequency, known as paired associative stimulation (PAS), is an effective method to induce motor cortex plasticity in humans. Here we investigated the effects of repetitive peripheral magnetic stimulation (rPMS) combined with low frequency rTMS ('magnetic-PAS') on intracortical and corticospinal excitability and whether those changes were widespread or circumscribed to the cortical area controlling the stimulated muscle. METHODS: Eleven healthy subjects underwent three 10min stimulation sessions: 10HzrPMS alone, applied in trains of 5 stimuli every 10s (60 trains) on the extensor carpi radialis (ECR) muscle; rTMS alone at an intensity 120% of ECR threshold, applied over motor cortex of ECR and at a frequency of 0.1Hz (60 stimuli) and magnetic PAS, i.e., paired rPMS and rTMS. We recorded motor evoked potentials (MEPs) from ECR and first dorsal interosseous (FDI) muscles. We measured resting motor threshold, motor evoked potentials (MEP) amplitude at 120% of RMT, short intracortical inhibition (SICI) at interstimulus interval (ISI) of 2ms and intracortical facilitation (ICF) at an ISI of 15ms before and immediately after each intervention. RESULTS: Magnetic-PAS, but not rTMS or rPMS applied separately, increased MEP amplitude and reduced short intracortical inhibition in ECR but not in FDI muscle. CONCLUSION: Magnetic-PAS can increase corticospinal excitability and reduce intracortical inhibition. The effects may be specific for the area of cortical representation of the stimulated muscle. SIGNIFICANCE: Application of magnetic-PAS might be relevant for motor rehabilitation

    Particulate matter Air Pollution induces hypermethylation of the p16 promoter Via a mitochondrial ROS-JNK-DNMT1 pathway

    Get PDF
    Exposure of human populations to chronically elevated levels of ambient particulate matter air pollution < 2.5 μm in diameter (PM2.5) has been associated with an increase in lung cancer incidence. Over 70% of lung cancer cell lines exhibit promoter methylation of the tumor suppressor p16, an epigenetic modification that reduces its expression. We exposed mice to concentrated ambient PM2.5 via inhalation, 8 hours daily for 3 weeks and exposed primary murine alveolar epithelial cells to daily doses of fine urban PM (5 µg/cm2). In both mice and alveolar epithelial cells, PM exposure increased ROS production, expression of the DNA methyltransferase 1 (DNMT1), and methylation of the p16 promoter. In alveolar epithelial cells, increased transcription of DNMT1 and methylation of the p16 promoter were inhibited by a mitochondrially targeted antioxidant and a JNK inhibitor. These findings provide a potential mechanism by which PM exposure increases the risk of lung cancer

    Microdroplet-Enabled Highly Parallel Co-Cultivation of Microbial Communities

    Get PDF
    Microbial interactions in natural microbiota are, in many cases, crucial for the sustenance of the communities, but the precise nature of these interactions remain largely unknown because of the inherent complexity and difficulties in laboratory cultivation. Conventional pure culture-oriented cultivation does not account for these interactions mediated by small molecules, which severely limits its utility in cultivating and studying “unculturable” microorganisms from synergistic communities. In this study, we developed a simple microfluidic device for highly parallel co-cultivation of symbiotic microbial communities and demonstrated its effectiveness in discovering synergistic interactions among microbes. Using aqueous micro-droplets dispersed in a continuous oil phase, the device could readily encapsulate and co-cultivate subsets of a community. A large number of droplets, up to ∼1,400 in a 10 mm×5 mm chamber, were generated with a frequency of 500 droplets/sec. A synthetic model system consisting of cross-feeding E. coli mutants was used to mimic compositions of symbionts and other microbes in natural microbial communities. Our device was able to detect a pair-wise symbiotic relationship when one partner accounted for as low as 1% of the total population or each symbiont was about 3% of the artificial community

    Gene Therapy Corrects Mitochondrial Dysfunction in Hematopoietic Progenitor Cells and Fibroblasts from Coq9R239X Mice

    Get PDF
    This study has been submitted to the patent's offices at the "University of Granada" and "Fundación Progreso y Salud". Please note that the results of this manuscript have been submitted to patent protection (application number P201630630; title: “Uses of Coenzyme Q biosynthetic proteins”; date:05/16/2016).Recent clinical trials have shown that in vivo and ex vivo gene therapy strategies can be an option for the treatment of several neurological disorders. Both strategies require efficient and safe vectors to 1) deliver the therapeutic gene directly into the CNS or 2) to genetically modify stem cells that will be used as Trojan horses for the systemic delivery of the therapeutic protein. A group of target diseases for these therapeutic strategies are mitochondrial encephalopathies due to mutations in nuclear DNA genes. In this study, we have developed a lentiviral vector (CCoq9WP) able to overexpress Coq9 mRNA and COQ9 protein in mouse embryonic fibroblasts (MEFs) and hematopoietic progenitor cells (HPCs) from Coq9R239X mice, an animal model of mitochondrial encephalopathy due to primary Coenzyme Q (CoQ) deficiency. Ectopic over-expression of Coq9 in both cell types restored the CoQ biosynthetic pathway and mitochondrial function, improving the fitness of the transduced cells. These results show the potential of the CCoq9WP lentiviral vector as a tool for gene therapy to treat mitochondrial encephalopathies.This work was supported by grants from Ministerio de Economía y Competitividad (Spain) and the European Regional Development Fund (ERDF) from the European Union, to LCL through the research grants SAF2013-47761-R and SAF2015-65786-R; by Fondo de Investigaciones Sanitarias ISCIII (Spain) and the European Regional Development Fund (ERDF) from the European Union through the research grants PI12/01097 and ISCIII Red de Terapia Celular TerCel RD12/0019/0006 to FM; by the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía-FEDER/Fondo de Cohesion Europeo (FSE) de Andalucía through the research grants P10-CTS-6133 to LCL; P09-CTS-04532, PI-57069, PI-0001/2009 and PAIDI-Bio-326 to F.M.; PI-0160/2012 to KB and PI-0407/2012 to MC; by the NIH through the research P01HD080642 to LCL and by the foundation “todos somos raros, todos somos únicos” to LCL. LCL is supported by the ‘Ramón y Cajal’ National Programme, Ministerio de Economía y Competitividad, Spain (RYC-2011-07643)

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    The role of reactive oxygen species in adipogenic differentiation

    Get PDF
    Interest in reactive oxygen species and adipocyte differentiation/adipose tissue function is steadily increasing. This is due in part to a search for alternative avenues for combating obesity, which results from the excess accumulation of adipose tissue. Obesity is a major risk factor for complex disorders such as cancer, type 2 diabetes, and cardiovascular diseases. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is often used as a model for studying adipogenesis in vitro. A key focus is the effect of both intra- and extracellular reactive oxygen species (ROS) on adipogenesis. The consensus from the majority of studies is that ROS, irrespective of the source, promote adipogenesis. The effect of ROS on adipogenesis is suppressed by antioxidants or ROS scavengers. Reactive oxygen species are generated during the process of adipocyte differentiation as well as by other cell metabolic processes. Despite many studies in this field, it is still not possible to state with certainty whether ROS measured during adipocyte differentiation are a cause or consequence of this process. In addition, it is still unclear what the exact sources are of the ROS that initiate and/or drive adipogenic differentiation in MSCs in vivo. This review provides an overview of our understanding of the role of ROS in adipocyte differentiation as well as how certain ROS scavengers and antioxidants might affect this process.The South African Medical Research Council in terms of the SAMRC's Flagship Award Project SAMRC-RFA-UFSP-01-2013/STEM CELLS, the SAMRC Extramural Unit for Stem Cell Research and Therapy and the Institute for Cellular and Molecular Medicine of the University of Pretoria.http://www.springer.comseries/5584hj2019GeneticsImmunologyOral Pathology and Oral Biolog

    Haematic Antegrade Repriming procedure to initiate a safer cardiopulmonary bypass.

    No full text
    SUMMARY: Background: Cardiopulmonary bypass is a safe technique frequently required in cardiac surgery. Despite that, it carries several undesired effects related to haemodilution, emboli and alterations on the coagulation and microcirculation. Different strategies like the minimized circuits (MiECC) or the retrograde autologous priming (RAP) have attemped to reduce its impact, but finally lead to inconsistent results as independent measures due to the heterogeneity on its practice. The haematic antegrade repriming (HAR) detailes a standardized materials and methodology that could offer a reproducible method inspired in evidence-based recommendations. Description of the technique: HAR is performed in a standardized Class IV MiECC that is reprimed antegradely with autologous blood obtained from the aorta of the patient, before the cardiopulmonary bypass (CPB) initiation. Then, CPB is started with the support of vacuum assisted venous drainage (VAVD). Discussion: The strict application of HAR results in a fix haemodilution of 300ml of crystalloid priming, avoiding the sudden haemodilution and the crystalloid embolism of the CPB initiation. The synergic effect that converges in HAR could exceed the evidence-based benefits of RAP, MiECC and VAVD promising to improve the outcomes in terms of transfusion, complications, stay and survival. Conclusion: HAR is proposed as a new approach to increase the safety of the CPB. Its overall benefits should be properly assessed and validated by current and further studies.Improved graphics indications and procedure

    Measures of Cortical Inhibition by Paired-Pulse Transcranial Magnetic Stimulation in Anesthetized Rats

    No full text
    Paired-pulse transcranial magnetic stimulation (ppTMS) is a noninvasive method to measure cortical inhibition in vivo. Long interpulse interval (50–500 ms) ppTMS (LI-ppTMS) provokes intracortical inhibitory circuits and can reveal pathologically impaired cortical inhibition in disorders such as epilepsy. Adaptation of ppTMS protocols to rodent disease models is highly desirable to facilitate basic and translational research. We previously adapted single-pulse TMS (spTMS) methods to rats, but ppTMS has yet to be applied. Specifically, whether ppTMS elicits an inhibitory response in rodents is unknown. ppTMS in rats also requires anesthesia, a setting under which the preservation of these measures is undetermined. We therefore tested, in anesthetized rats, whether anesthetic choice affects spTMS-motor-evoked potentials (MEPs), LI-ppTMS in rats, as in humans, elicits intracortical inhibition of the MEP, and rat LI-ppTMS inhibition is acutely impaired in a seizure model. Rats were anesthetized with pentobarbital (PB) or ketamine-atropine-xylazine (KAX) and stimulated unilaterally over the motor cortex while recording bilateral brachioradialis MEPs. LI-ppTMS was applied analogous to human long interval intracortical inhibition (LICI) protocols, and acute changes in inhibition were evaluated following injection of the convulsant pentylenetetrazole (PTZ). We find that spTMS-evoked MEPs were reliably present under either anesthetic, and that LI-ppTMS elicits inhibition of the conditioned MEP in rats, similar to human LICI, by as much as 58 ± 12 and 71 ± 11% under PB and KAX anesthesia, respectively. LI-ppTMS inhibition was reduced to as much as 53% of saline controls following PTZ injection, while spTMS-derived measures of corticospinal excitability were unchanged. Our data show that regional inhibition, similar to human LICI, is present in rats, can be elicited under PB or KAX anesthesia, and is reduced following convulsant administration. These results suggest a potential for LI-ppTMS as a biomarker of impaired cortical inhibition in murine disease models
    corecore