48 research outputs found

    Intermolecular interactions between the SH3 domain and the proline-rich TH region of Bruton’s tyrosine kinase

    Get PDF
    AbstractThe SH3 domain of Bruton’s tyrosine kinase (Btk) is preceded by the Tec homology (TH) region containing proline-rich sequences. We have studied a protein fragment containing both the Btk SH3 domain and the proline-rich sequences of the TH region (PRR-SH3). Intermolecular NMR cross-relaxation measurements, gel permeation chromatography profiles, titrations with proline-rich peptides, and 15N NMR relaxation measurements are all consistent with a monomer–dimer equilibrium with a dissociation constant on the order of 60 μM. The intermolecular interactions do, at least in part, involve proline-rich sequences in the TH region. This behavior of Btk PRR-SH3 may have implications for the functional action of Btk

    Recombinant amyloid beta-peptide production by coexpression with an affibody ligand.

    Get PDF
    BACKGROUND: Oligomeric and fibrillar aggregates of the amyloid beta-peptide (Abeta) have been implicated in the pathogenesis of Alzheimer's disease (AD). The characterization of Abeta assemblies is essential for the elucidation of the mechanisms of Abeta neurotoxicity, but requires large quantities of pure peptide. Here we describe a novel approach to the recombinant production of Abeta. The method is based on the coexpression of the affibody protein ZAbeta3, a selected affinity ligand derived from the Z domain three-helix bundle scaffold. ZAbeta3 binds to the amyloidogenic central and C-terminal part of Abeta with nanomolar affinity and consequently inhibits aggregation. RESULTS: Coexpression of ZAbeta3 affords the overexpression of both major Abeta isoforms, Abeta(1-40) and Abeta(1-42), yielding 4 or 3 mg, respectively, of pure 15N-labeled peptide per liter of culture. The method does not rely on a protein-fusion or -tag and thus does not require a cleavage reaction. The purified peptides were characterized by NMR, circular dichroism, SDS-PAGE and size exclusion chromatography, and their aggregation propensities were assessed by thioflavin T fluorescence and electron microscopy. The data coincide with those reported previously for monomeric, largely unstructured Abeta. ZAbeta3 coexpression moreover permits the recombinant production of Abeta(1-42) carrying the Arctic (E22G) mutation, which causes early onset familial AD. Abeta(1-42)E22G is obtained in predominantly monomeric form and suitable, e.g., for NMR studies. CONCLUSION: The coexpression of an engineered aggregation-inhibiting binding protein offers a novel route to the recombinant production of amyloidogenic Abeta peptides that can be advantageously employed to study the molecular basis of AD. The presented expression system is the first for which expression and purification of the aggregation-prone Arctic variant (E22G) of Abeta(1-42) is reported.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    A Potential Role for Drosophila Mucins in Development and Physiology

    Get PDF
    Vital vertebrate organs are protected from the external environment by a barrier that to a large extent consists of mucins. These proteins are characterized by poorly conserved repeated sequences that are rich in prolines and potentially glycosylated threonines and serines (PTS). We have now used the characteristics of the PTS repeat domain to identify Drosophila mucins in a simple bioinformatics approach. Searching the predicted protein database for proteins with at least 4 repeats and a high ST content, more than 30 mucin-like proteins were identified, ranging from 300–23000 amino acids in length. We find that Drosophila mucins are present at all stages of the fly life cycle, and that their transcripts localize to selective organs analogous to sites of vertebrate mucin expression. The results could allow for addressing basic questions about human mucin-related diseases in this model system. Additionally, many of the mucins are expressed in selective tissues during embryogenesis, thus revealing new potential functions for mucins as apical matrix components during organ morphogenesis

    Comparing the folding free-energy landscapes of Abeta42 variants with different aggregation properties.

    No full text
    The properties of the amyloid-beta peptide that lead to aggregation associated with Alzheimer's disease are not fully understood. This study aims at identifying conformational differences among four variants of full-length Abeta42 that are known to display very different aggregation properties. By extensive all-atom Monte Carlo simulations, we find that a variety of beta-sheet structures with distinct turns are readily accessible for full-length Abeta42. In the simulations, wild type (WT) Abeta42 preferentially populates two major classes of conformations, either extended with high beta-sheet content or more compact with lower beta-sheet content. The three mutations studied alter the balance between these classes. Strong mutational effects are observed in a region centered at residues 23-26, where WT Abeta42 tends to form a turn. The aggregation-accelerating E22G mutation associated with early onset of Alzheimer's disease makes this turn region conformationally more diverse, whereas the aggregation-decelerating F20E mutation has the reverse effect, and the E22G/I31E mutation reduces the turn population. Comparing results for the four Abeta42 variants, we identify specific conformational properties of residues 23-26 that might play a key role in aggregation. Proteins 2010. (c) 2010 Wiley-Liss, Inc

    Monte Carlo Study of the Formation and Conformational Properties of Dimers of Aβ42 Variants.

    Get PDF
    Small soluble oligomers, as well as dimers in particular, of the amyloid β-peptide (Aβ) are believed to play an important pathological role in Alzheimer's disease. Here, we investigate the spontaneous dimerization of Aβ42, with 42 residues, by implicit solvent all-atom Monte Carlo simulations, for the wild-type peptide and the mutants F20E, E22G and E22G/I31E. The observed dimers of these variants share many overall conformational characteristics but differ in several aspects at a detailed level. In all four cases, the most common type of secondary structure is intramolecular antiparallel β-sheets. Parallel, in-register β-sheet structure, as in models for Aβ fibrils, is rare. The primary force driving the formation of dimers is hydrophobic attraction. The conformational differences that we do see involve turns centered in the 20-30 region. The probability of finding turns centered in the 25-30 region, where there is a loop in Aβ fibrils, is found to increase upon dimerization and to correlate with experimentally measured rates of fibril formation for the different Aβ42 variants. Our findings hint at reorganization of this part of the molecule as a potentially critical step in Aβ aggregation
    corecore