67 research outputs found

    Emission of Toxic HCN During NOx Removal by Ammonia SCR in the Exhaust of Lean-Burn Natural Gas Engines

    Get PDF
    Reducing greenhouse gas and pollutant emissions is one of the most stringent priorities of our society to minimize their dramatic effects on health and environment. Natural gas (NG) engines, in particular at lean conditions, emit less CO2_{2} in comparison to combustion engines operated with liquid fuels but NG engines still require emission control devices for NOx_{x} removal. Using state‐of‐the‐art technologies for selective catalytic reduction (SCR) of NOx_{x} with NH3_{3}, we evaluated the interplay of the reducing agent NH3_{3} and formaldehyde, which is always present in the exhaust of NG engines. Our results show that a significant amount of highly toxic hydrogen cyanide (HCN) is formed. All catalysts tested partially convert formaldehyde to HCOOH and CO. Additionally, they form secondary emissions of HCN due to catalytic reactions of formaldehyde and its oxidation intermediates with NH3_{3}. With the present components of the exhaust gas aftertreatment system the HCN emissions are not efficiently converted to non‐polluting gases. The development of more advanced catalyst formulations with improved oxidation activity is mandatory to solve this novel critical issue

    Density Functional Theory Study of the Hydrogenation of Carbon Monoxide over the Co (001) Surface: Implications for the Fischer–Tropsch Process

    Get PDF
    The increasing demand for renewable fuels and sustainable products has encouraged growing interest in the development of active and selective catalysts for the conversion of carbon monoxide into desirable products. The Fischer–Tropsch process consists of the reaction of a synthesis gas mixture containing carbon monoxide and hydrogen (syngas), which are polymerized into liquid hydrocarbon chains, often using a cobalt catalyst. Here, first-principles calculations based on the density functional theory (DFT) are used to investigate the reaction mechanism of the Fischer–Tropsch synthesis over the Co (001) surface. The most energetically favorable adsorption configurations of the species involved in the carbon monoxide hydrogenation process are identified, and the possible elementary steps of hydrogenation and their related transition states are explored using the Vienna Ab initio simulation package (VASP). The results provide the mechanisms for the formation of CH4, CH3OH and C2H2 compounds, where the calculations suggest that CH4 is the dominant product. Findings from the reaction energies reveal that the preferred mechanism for the hydrogenation of carbon monoxide is through HCO and cis-HCOH, and the largest exothermic reaction energy in the CH4 formation pathway is released during the hydrogenation of cis-HCOH (−0.773 eV). An analysis of the kinetics of the hydrogenation reactions indicates that the CH production from cis-HCOH has the lowest energy barrier of just 0.066 eV, and the hydrogenation of CO to COH, with the largest energy barrier of 1.804 eV, is the least favored reaction kinetically

    Evidence from the decade of action for road safety: a systematic review of the effectiveness of interventions in low and middle-income countries

    Get PDF
    Objectives: To evaluate the effectiveness of road safety interventions in low and middle-income countries (LMICs), considering the principles of systems theory presented in the Global Plan for the Decade of Action for Road Safety. Methods: We conducted a systematic review according to PRISMA guidelines. We searched for original research studies published during 2011–2019 in the following databases: Medline, Embase, PsycInfo, Scopus, Web of Science, Cochrane library, Global Health Library, ProQuest and TRID. We included studies conducted in LMICs, evaluating the effects of road traffic safety interventions and reporting health-related outcomes. Results: Of 12,353 non-duplicate records, we included a total of 33 studies. Most interventions were related to legislation and enforcement (n = 18), leadership (n = 5) and speed management (n = 4). Overall, legislation and enforcement interventions appear to have the largest impact. Few studies were found for road infrastructure, vehicle safety standard and post crash response interventions. Conclusion: Based on the currently available evidence, legislation and enforcement interventions appear most impactful in LMICs. However, many interventions remain understudied and more holistic approaches capturing the complexity of road transport systems seem desirable. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=197267, identifier CRD42020197267

    Airborne particulate matter in Tehran�s ambient air

    Get PDF
    In recent decades, particulate matter (PM) concentrations in Tehran have exceeded the World Health Organization�s (WHO) guideline on most days. In this study, a search protocol was defined by identifying the keywords, to carry out a systematic review of the concentrations and composition of PM in Tehran�s ambient air. For this purpose, searches were done in Scopus, PubMed, and Web of Science in 2019. Among the founded articles (197 in Scopus, 61 in PubMed, and 153 in Web of Science). The results show that in Tehran, the annual average PM10 exceeded the WHO guidelines and for more than 50.0 of the days, the PM2.5 concentration was more than WHO 24-h guidance value. The PM concentration in Tehran has two seasonal peaks due to poorer dispersion and suspension from dry land, respectively. Tehran has two daily PM peaks due to traffic and changes in boundary-layer heights; one just after midnight and the other during morning rush hour. Indoor concentrations of PM10 and PM2.5 in Tehran were 10.6 and 21.8 times higher than the corresponding values in ambient air. Tehran represents a unique case of problems of controlling PM because of its geographical setting, emission sources, and land use. This review provided a comprehensive assessment for decision makers to assist them in making appropriate policy decisions to improve the air quality. Considering factors such as diversity of resources, temporal and spatial variations, and urban location is essential in developing control plans. Also future studies should focus more on PM reduction plans. © 2021, Springer Nature Switzerland AG

    Aberrant expression of breast development-related microRNAs, miR-22, miR-132, and miR-212, in breast tumor tissues

    Get PDF
    Purpose: MicroRNAs (miRNAs) are a major class of small endogenous RNA molecules that posttranscriptionally regulate the expression of most genes in the human genome. miRNAs are often located in chromosomal fragile sites, which are susceptible to amplification or deletion. Chromosomal deletions are frequent events in breast cancer cells. Deletion and loss of heterozygosity at 17p13.3 have been reported in 49 of breast cancers. The aim of the current study was to evaluate potential expression alterations of miR-22, miR-132, and miR-212, which are located on the 17p13.3 locus and are required for mammary gland development. Methods: A matched case-control study was conducted, which included 36 pairs of tumor and matched nontumor surgical specimens from patients diagnosed with breast invasive ductal carcinoma. Formalin-fixed paraffin-embedded samples from archival collections at the pathology department of Shariati Hospital were prepared for RNA extraction using the xylene-ethanol method before total RNA was isolated with TRIzol Reagent. Specific primers were designed for cDNA synthesis and miRNA amplification. The expression of miRNAs was then evaluated by real-time polymerase chain reaction (RTPCR). Results: According to our RT-PCR data, the miR-212/ miR-132 family was downregulated in breast cancer (0.328-fold, p<0.001), and this reduced expression was the most prominent in high-grade tumors. In contrast, miR-22 exhibited a significant upregulation in breast tumor samples (2.183-fold, p=0.040). Conclusion: Consistent with the frequent deletion of the 17p13.3 locus in breast tumor cells, our gene expression data demonstrated a significant downregulation of miR-212 and miR-132 in breast cancer tissues. In contrast, we observed a significant upregulation of miR-22 in breast tumor samples. The latter conflicting result may have been due to the upregulation of miR-22 in stromal/cancer-associated fibroblasts, rather than in the tumor cells. © 2016 Korean Breast Cancer Society. All rights reserved

    Municipal solid waste management during COVID-19 pandemic: effects and repercussions

    Get PDF
    The COVID-19 pandemic has an adverse effect on the environment. This epidemic�s effect on the waste composition and management and the impacts of municipal solid waste management (MSWM) on disease transmission or controlling are considered a compelling experience of living in the COVID-19 pandemic that can effectively control the process. This systematic review research was conducted to determine the effects of COVID-19 on the quantity of waste and MSWM. Searches were conducted in three databases (using keywords covid 19, coronaviruses, and waste), and among the published articles from 2019 to 2021, 56 ones were selected containing information on the quantity and waste management during the COVID-19 pandemic. The results showed that COVID-19 caused the quantity variation and composition change of MSW. COVID-19 also has significant effects on waste recycling, medical waste management, quantity, and littered waste composition. On the other hand, the COVID-19 pandemic has changed waste compounds� management activities and waste generation sources. Recognizing these issues can help plan MSWM more efficiently and reduce virus transmission risk through waste. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature

    Study of littered wastes in different urban land-uses: An 6 environmental status assessment

    Get PDF
    Littered waste is a severe environmental problem. Although there have been many studies on wastes littered in the environments like beaches and seas, there is insufficient information on littered wastes in the urban settings. In this research, employing visual survey by the field litter counts method, littered wastes in six urban land uses in Qazvin, Iran were studied. The results showed that administrative and recreational land uses, by an average of 5.22 and 9.59 items per 100 m, respectively, had the lowest pollution, while low-density commercial land use had the maximum pollution by 185.96 items per 100 m. Urban littered waste ratios were not the same in various land uses: cigarette waste and paper and cardboard accounted for higher than 80 of the whole littered wastes in most studied land uses. The cigarette butt was also the most frequently litter in the city. In terms of environmental status, administrative and recreational areas can be defined as places with good conditions, while low-density commercial land use had bad conditions. Consequently, urban land use was acknowledged as a significant factor in the density of littered waste. More attention to cleaning the commercial land use to reduce the density of littered waste, and also finding methods to decrease littering waste by citizens, is a need in urban environment. © 2020, Springer Nature Switzerland AG

    Municipal solid waste management during COVID-19 pandemic: a comparison between the current activities and guidelines

    Get PDF
    The COVID-19 pandemic has affected everyone�s lifestyle and this has resulted in a change in the quantity and composition of municipal solid wastes. Moreover, the post-pandemic waste management is very important as a bad management may lead to the more spread of the disease. The objective of this study was to evaluate the application of guidelines presented for the era of the COVID-19 pandemic in proper solid waste management. To this end, the data were collected by using interviews and field researches and then the obtained data were compared with the international guidelines presented by international organizations. By investigating the municipal waste management during this pandemic and its changes compared to pre-COVID-19, coordination of the plans with the guidelines was investigated. The activities of storage, collection, transportation, recycling, final landfill, as well as the observation of the health instructions by staff and informal sections were assessed in the current research. Although the results showed that the situation was satisfactory in the sections like health and safety of waste management operators due to the existence of protocols and general educations, the waste management plans have not been changed much from before the epidemic of the Coronavirus. The absence of a national policy and plan for waste management in the era of a pandemic and ignoring the guidelines developed by other countries and organizations were observable. Therefore, the codification of new policies for municipal waste management during an epidemic is necessary. © 2021, Springer Nature Switzerland AG

    Effect of COVID-19 pandemic on medical waste management: a case study

    Get PDF
    Covid-19 Pandemic leads to medical services for the society all over the world. The Covid-19 pandemic influence the waste management and specially medical waste management. In this study, the effect of the Covid-19 outbreak on medical waste was evaluated via assessing the solid waste generation, composition, and management status in five hospitals in Iran. The results indicated that the epidemic Covid-19 leads to increased waste generation on average 102.2 in both private and public hospitals. In addition, the ratio of infectious waste in the studied hospitals increased by an average of 9 in medical waste composition and 121 compared with before COVID-19 pandemic. Changes in plans and management measurement such as increasing the frequency of waste collection per week leads to lower the risk of infection transmission from medical waste in the studied hospitals. The results obtained from the present research clearly show the changes in medical waste generation and waste composition within pandemic Covid-19. In addition, established new ward, Covid-19 ward with high-infected waste led to new challenges which should be managed properly by change in routine activities. © 2021, The Author(s)

    C-Terminal Domain Deletion Enhances the Protective Activity of cpa/cpb Loaded Solid Lipid Nanoparticles against Leishmania major in BALB/c Mice

    Get PDF
    Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis with an annual incidence of approximately 2 million cases and is endemic in 88 countries, including Iran. CL's continued spread, along with rather ineffectual treatments and drug-resistant variants emergence has increased the need for advanced preventive strategies. We studied Type II cysteine proteinase (CPA) and Type I (CPB) with its C-terminal extension (CTE) as cocktail DNA vaccine against murine and canine leishmaniasis. However, adjuvants' success in enhancing immune responses to selected antigens led us to refocus our vaccine development programs. Herein, we discuss cationic solid lipid nanoparticles' (cSLN) ability to improve vaccine-induced protective efficacy against CL and subsequent lesion size and parasite load reduction in BALB/c mice. For this work, we evaluated five different conventional as well as novel parasite detection techniques, i.e., footpad imaging, footpad flowcytometry and lymph node flowcytometry for disease progression assessments. Vaccination with cSLN-cpa/cpb-CTE formulation showed highest parasite inhibition at 3-month post vaccination. Immunized mice showed reduced IL-5 level and significant IFN-ã increase, compared to control groups. We think our study represents a potential future and a major step forward in vaccine development against leishmaniasis
    corecore