152 research outputs found
Anderson impurity in the one-dimensional Hubbard model on finite size systems
An Anderson impurity in a Hubbard model on chains with finite length is
studied using the density-matrix renormalization group (DMRG) technique. In the
first place, we analyzed how the reduction of electron density from
half-filling to quarter-filling affects the Kondo resonance in the limit of
Hubbard repulsion U=0. In general, a weak dependence with the electron density
was found for the local density of states (LDOS) at the impurity except when
the impurity, at half-filling, is close to a mixed valence regime. Next, in the
central part of this paper, we studied the effects of finite Hubbard
interaction on the chain at quarter-filling. Our main result is that this
interaction drives the impurity into a more defined Kondo regime although
accompanied in most cases by a reduction of the spectral weight of the impurity
LDOS. Again, for the impurity in the mixed valence regime, we observed an
interesting nonmonotonic behavior. We also concluded that the conductance,
computed for a small finite bias applied to the leads, follows the behavior of
the impurity LDOS, as in the case of non-interacting chains. Finally, we
analyzed how the Hubbard interaction and the finite chain length affect the
spin compensation cloud both at zero and at finite temperature, in this case
using quantum Monte Carlo techniques.Comment: 9 pages, 9 figures, final version to be published in Phys. Rev.
Conductance through an array of quantum dots
We propose a simple approach to study the conductance through an array of
interacting quantum dots, weakly coupled to metallic leads. Using a mapping to
an effective site which describes the low-lying excitations and a slave-boson
representation in the saddle-point approximation, we calculated the conductance
through the system. Explicit results are presented for N=1 and N=3: a linear
array and an isosceles triangle. For N=1 in the Kondo limit, the results are in
very good agreement with previous results obtained with numerical
renormalization group (NRG). In the case of the linear trimer for odd , when
the parameters are such that electron-hole symmetry is induced, we obtain
perfect conductance . The validity of the approach is discussed in
detail.Comment: to appear in Phys. Rev.
Quantum dot with ferromagnetic leads: a density-matrix renormalization group study
A quantum dot coupled to ferromagnetically polarized one-dimensional leads is
studied numerically using the density matrix renormalization group method.
Several real space properties and the local density of states at the dot are
computed. It is shown that this local density of states is suppressed by the
parallel polarization of the leads. In this case we are able to estimate the
length of the Kondo cloud, and to relate its behavior to that suppression.
Another important result of our study is that the tunnel magnetoresistance as a
function of the quantum dot on-site energy is minimum and negative at the
symmetric point.Comment: 4 pages including 5 figures. To be published as a Brief Report in
Phys. Rev.
Two-state behaviour of Kondo trimers
The electronic properties and spectroscopic features of a magnetic trimer
with a Kondo-like coupling to a non-magnetic metallic substrate are analyzed at
zero temperature. The substrate density of states is depressed in the trimer
neighbourhood, being exactly zero at the substrate chemical potential. The size
of the resonance strongly depends on the magnetic state of the trimer, and
exhibits a two-state behavior. The geometrical dependence of these results
agree qualitatively with recent experiments and could be reproduced in a
triangular quantum dot arrangement.Comment: 5 pages, including 4 figure
Nonlinear Fano resonance and bistable wave transmission
We consider a discrete model that describes a linear chain of particles
coupled to a single-site defect with instantaneous Kerr nonlinearity. We show
that this model can be regarded as a nonlinear generalization of the familiar
Fano-Anderson model, and it can generate the amplitude depended bistable
resonant transmission or reflection. We identify these effects as the nonlinear
Fano resonance, and study its properties for continuous waves and pulses.Comment: 9 pages, 14 figure, submitted to Phys. Rev.
Are some areas more equal than others? : Socioeconomic inequality in potentially avoidable emergency hospital admissions within English local authority areas
Objectives Reducing health inequalities is an explicit goal of England's health system. Our aim was to compare the performance of English local administrative areas in reducing socioeconomic inequality in emergency hospital admissions for ambulatory care sensitive chronic conditions. Methods We used local authority area as a stable proxy for health and long-term care administrative geography between 2004/5 and 2011/12. We linked inpatient hospital activity, deprivation, primary care, and population data to small area neighbourhoods (typical population 1500) within administrative areas (typical population 250,000). We measured absolute inequality gradients nationally and within each administrative area using neighbourhood-level linear models of the relationship between national deprivation and age-sex-adjusted emergency admission rates. We assessed local equity performance by comparing local inequality against national inequality to identify areas significantly more or less equal than expected; evaluated stability over time; and identified where equity performance was steadily improving or worsening. We then examined associations between change in socioeconomic inequalities and change in within-area deprivation (gentrification). Finally, we used administrative area-level random and fixed effects models to examine the contribution of primary care to inequalities in admissions. Results Data on 316 administrative areas were included in the analysis. Local inequalities were fairly stable between consecutive years, but 32 areas (10%) showed steadily improving or worsening equity. In the 21 improving areas, the gap between most and least deprived fell by 3.9 admissions per 1000 (six times the fall nationally) between 2004/5 and 2011/12, while in the 11 areas worsening, the gap widened by 2.4. There was no indication that measured improvements in local equity were an artefact of gentrification or that changes in primary care supply or quality contributed to changes in inequality. Conclusions Local equity performance in reducing inequality in emergency admissions varies both geographically and over time. Identifying this variation could provide insights into which local delivery strategies are most effective in reducing such inequalities
Incommmensurability and unconventional superconductor to insulator transition in the hubbard model with bond-charge interaction
[120402.EG Titolo (scorretto) da WebOfScience e PHYSICAL REVIEW LETTERS.
Electron transport across a quantum wire in the presence of electron leakage to a substrate
We investigate electron transport through a mono-atomic wire which is tunnel
coupled to two electrodes and also to the underlying substrate. The setup is
modeled by a tight-binding Hamiltonian and can be realized with a scanning
tunnel microscope (STM). The transmission of the wire is obtained from the
corresponding Green's function. If the wire is scanned by the contacting STM
tip, the conductance as a function of the tip position exhibits oscillations
which may change significantly upon increasing the number of wire atoms. Our
numerical studies reveal that the conductance depends strongly on whether or
not the substrate electrons are localized. As a further ubiquitous feature, we
observe the formation of charge oscillations.Comment: 7 pages, 7 figure
Kondo resonances and Fano antiresonances in transport through quantum dots
The transmission of electrons through a non-interacting tight-binding chain
with an interacting side quantum dot (QD) is analized. When the Kondo effect
develops at the dot the conductance presents a wide minimum, reaching zero at
the unitary limit. This result is compared to the opposite behaviour found in
an embedded QD. Application of a magnetic field destroys the Kondo effect and
the conductance shows pairs of dips separated by the charging energy U. The
results are discussed in terms of Fano antiresonances and explain qualitatively
recent experimental results.Comment: 4 pages including 4 figure
- …
