3,242 research outputs found
Polar Perturbations of Self-gravitating Supermassive Global Monopoles
Spontaneous global symmetry breaking of O(3) scalar field gives rise to
point-like topological defects, global monopoles. By taking into account
self-gravity,the qualitative feature of the global monopole solutions depends
on the vacuum expectation value v of the scalar field. When v < sqrt{1 / 8 pi},
there are global monopole solutions which have a deficit solid angle defined at
infinity. When sqrt{1 / 8 pi} <= v < sqrt{3 / 8 pi}, there are global monopole
solutions with the cosmological horizon, which we call the supermassive global
monopole. When v >= sqrt{3 / 8 pi}, there is no nontrivial solution. It was
shown that all of these solutions are stable against the spherical
perturbations. In addition to the global monopole solutions, the de Sitter
solutions exist for any value of v. They are stable against the spherical
perturbations when v sqrt{3 / 8 pi}.
We study polar perturbations of these solutions and find that all
self-gravitating global monopoles are stable even against polar perturbations,
independently of the existence of the cosmological horizon, while the de Sitter
solutions are always unstable.Comment: 10 pages, 6 figures, corrected some type mistakes (already corrected
in PRD version
Abelian Higgs Hair for Rotating and Charged Black Holes
We study the problem of vortex solutions in the background of rotating black
holes in both asymptotically flat and asymptoticlly anti de Sitter spacetimes.
We demonstrate the Abelian Higgs field equations in the background of four
dimensional Kerr, Kerr-AdS and Reissner-Nordstrom-AdS black holes have vortex
line solutions. These solutions, which have axial symmetry, are generalization
of the Nielsen-Olesen string. By numerically solving the field equations in
each case, we find that these black holes can support an Abelian Higgs field as
hair. This situation holds even in the extremal case, and no flux-expulsion
occurs. We also compute the effect of the self gravity of the Abelian Higgs
field show that the the vortex induces a deficit angle in the corresponding
black hole metrics.Comment: 22 pages, 16 figures, a section about the vortex self gravity on Kerr
black hole added, extremal black holes considered, one figure changed, one
reference adde
Abelian Higgs Hair for AdS-Schwarzschild Black Hole
We show that the Abelian Higgs field equations in the background of the four
dimensional AdS-Schwarzschild black hole have a vortex line solution. This
solution, which has axial symmetry, is a generalization of the AdS spacetime
Nielsen-Olesen string. By a numerical study of the field equations, we show
that black hole could support the Abelian Higgs field as its Abelian hair.
Also, we conside the self gravity of the Abelian Higgs field both in the pure
AdS spacetime and AdS-Schwarzschild black hole background and show that the
effect of string as a black hole hair is to induce a deficit angle in the
AdS-Schwarzschild black hole.Comment: 19 pages, 33 figure
Mapping the Milky Way bulge at high resolution: the 3D dust extinction, CO, and X factor maps
Three dimensional interstellar extinction maps provide a powerful tool for
stellar population analysis. We use data from the VISTA Variables in the Via
Lactea survey together with the Besan\c{c}on stellar population synthesis model
of the Galaxy to determine interstellar extinction as a function of distance in
the Galactic bulge covering and . We adopted a
recently developed method to calculate the colour excess. First we constructed
the H-Ks vs. Ks and J-Ks vs. Ks colour-magnitude diagrams based on the VVV
catalogues that matched 2MASS. Then, based on the temperature-colour relation
for M giants and the distance-colour relations, we derived the extinction as a
function of distance. The observed colours were shifted to match the intrinsic
colours in the Besan\c{c}on model as a function of distance iteratively. This
created an extinction map with three dimensions: two spatial and one distance
dimension along each line of sight towards the bulge. We present a 3D
extinction map that covers the whole VVV area with a resolution of 6' x 6',
using distance bins of 0.5 kpc. The high resolution and depth of the photometry
allows us to derive extinction maps for a range of distances up to 10 kpc and
up to 30 magnitudes of extinction in . Integrated maps show the same
dust features and consistent values as other 2D maps. We discuss the spatial
distribution of dust features in the line of sight, which suggests that there
is much material in front of the Galactic bar, specifically between 5-7 kpc. We
compare our dust extinction map with high-resolution maps towards
the Galactic bulge, where we find a good correlation between and
. We determine the X factor by combining the CO map and our dust
extinction map. Our derived average value is consistent with the canonical
value of the Milky Way.Comment: 11 pages, 18 figures, accepted for publication in
Astronomy&Astrophysic
Perturbations of global monopoles as a black hole's hair
We study the stability of a spherically symmetric black hole with a global
monopole hair. Asymptotically the spacetime is flat but has a deficit solid
angle which depends on the vacuum expectation value of the scalar field. When
the vacuum expectation value is larger than a certain critical value, this
spacetime has a cosmological event horizon. We investigate the stability of
these solutions against the spherical and polar perturbations and confirm that
the global monopole hair is stable in both cases. Although we consider some
particular modes in the polar case, our analysis suggests the conservation of
the "topological charge" in the presence of the event horizons and violation of
black hole no-hair conjecture in asymptotically non-flat spacetime.Comment: 11 pages, 2 figures, some descriptions were improve
Looking for a charge asymmetry in cosmic rays
We combine the data from PAMELA and FERMI-LAT cosmic ray experiments by
introducing a simple sum rule. This allows to investigate whether the lepton
excess observed by these experiments is charge symmetric or not. We also show
how the data can be used to predict the positron fraction at energies yet to be
explored by the AMS-02 experiment.Comment: Contribution to the proceedings of DISCRETE 2010, 5 pages, 2 figure
High sensitive X-ray films to detect electron showers in 100 GeV region
Nonscreen type X-ray films were used in emulsion chamber experiments to detect high energy showers in cosmic rays. Ranges of the detection threshold is from about 1 to 2 TeV depending on the exposure conditions. Different types of X-ray films and sheets i.e. high sensitive screen type X-ray films and luminescence sheets were tested. The threshold of the shower detection is found to be about 200 GeV, which is much lower than that of nonscreen type X-ray films. These films are useful to detect showers in the medium energy range, a few hundred GeV, of the cosmic ray electrons
Abelian Higgs Hair for a Static Charged Black String
We study the problem of vortex solutions in the background of an electrically
charged black string. We show numerically that the Abelian Higgs field
equations in the background of a four-dimensional black string have vortex
solutions. These solutions which have axial symmetry, show that the black
string can support the Abelian Higgs field as hair. This situation holds also
in the case of the extremal black string. We also consider the self-gravity of
the Abelian Higgs field and show that the effect of the vortex is to induce a
deficit angle in the metric under consideration.Comment: REVTEX4, 12 pages, 6 figures, The version to be appeared in Phys.
Rev.
Do stringy corrections stabilize coloured black holes?
We consider hairy black hole solutions of Einstein-Yang-Mills-Dilaton theory,
coupled to a Gauss-Bonnet curvature term, and we study their stability under
small, spacetime-dependent perturbations. We demonstrate that the stringy
corrections do not remove the sphaleronic instabilities of the coloured black
holes with the number of unstable modes being equal to the number of nodes of
the background gauge function. In the gravitational sector, and in the limit of
an infinitely large horizon, the coloured black holes are also found to be
unstable. Similar behaviour is exhibited by the magnetically charged black
holes while the bulk of the neutral black holes are proven to be stable under
small, gauge-dependent perturbations. Finally, the electrically charged black
holes are found to be characterized only by the existence of a gravitational
sector of perturbations. As in the case of neutral black holes, we demonstrate
that for the bulk of electrically charged black holes no unstable modes arise
in this sector.Comment: 17 pages, Revtex, comments and a reference added, version to appear
in Physical Review
Systematic study of the decay rates of antiprotonic helium states
A systematic study of the decay rates of antiprotonic helium (\pbhef and
\pbhet) at CERN AD (Antiproton Decelerator) has been made by a laser
spectroscopic method. The decay rates of some of its short-lived states, namely
those for which the Auger rates are much larger than
their radiative decay rates ( s),
were determined from the time distributions of the antiproton annihilation
signals induced by laser beams, and the widths of the atomic resonance lines.
The magnitude of the decay rates, especially their relation with the transition
multipolarity, is discussed and compared with theoretical calculations.Comment: 6 pages, 5 figures, and 1 tabl
- …
