44 research outputs found
About entanglement properties of kaons and tests of hidden variables models
In this letter we discuss entanglement properties of neutral kaons systems
and their use for testing local realism. In particular we show that, as
previous proposals, also a scheme recently suggested for performing a test of
hidden variable theories against standard quantum mechanics cannot be
conclusive
Thermal correction to the Casimir force, radiative heat transfer, and an experiment
The low-temperature asymptotic expressions for the Casimir interaction
between two real metals described by Leontovich surface impedance are obtained
in the framework of thermal quantum field theory. It is shown that the Casimir
entropy computed using the impedance of infrared optics vanishes in the limit
of zero temperature. By contrast, the Casimir entropy computed using the
impedance of the Drude model attains at zero temperature a positive value which
depends on the parameters of a system, i.e., the Nernst heat theorem is
violated. Thus, the impedance of infrared optics withstands the thermodynamic
test, whereas the impedance of the Drude model does not. We also perform a
phenomenological analysis of the thermal Casimir force and of the radiative
heat transfer through a vacuum gap between real metal plates. The
characterization of a metal by means of the Leontovich impedance of the Drude
model is shown to be inconsistent with experiment at separations of a few
hundred nanometers. A modification of the impedance of infrared optics is
suggested taking into account relaxation processes. The power of radiative heat
transfer predicted from this impedance is several times less than previous
predictions due to different contributions from the transverse electric
evanescent waves. The physical meaning of low frequencies in the Lifshitz
formula is discussed. It is concluded that new measurements of radiative heat
transfer are required to find out the adequate description of a metal in the
theory of electromagnetic fluctuations.Comment: 19 pages, 4 figures. svjour.cls is used, to appear in Eur. Phys. J.
Entangled-Photon Generation from Parametric Down-Conversion in Media with Inhomogeneous Nonlinearity
We develop and experimentally verify a theory of Type-II spontaneous
parametric down-conversion (SPDC) in media with inhomogeneous distributions of
second-order nonlinearity. As a special case, we explore interference effects
from SPDC generated in a cascade of two bulk crystals separated by an air gap.
The polarization quantum-interference pattern is found to vary strongly with
the spacing between the two crystals. This is found to be a cooperative effect
due to two mechanisms: the chromatic dispersion of the medium separating the
crystals and spatiotemporal effects which arise from the inclusion of
transverse wave vectors. These effects provide two concomitant avenues for
controlling the quantum state generated in SPDC. We expect these results to be
of interest for the development of quantum technologies and the generation of
SPDC in periodically varying nonlinear materials.Comment: submitted to Physical Review
Environmental NGOs at a crossroads?
Article published as introduction to the Special Issue 'Environmental Politics at a crossroads', edited by Nathalie Berny & Christopher Rootes, Environmental Politics vol.27.no.6, November 201
Early- Onset Stroke and Vasculopathy Associated with Mutations in ADA2
Adenosine deaminase 2 (ADA2) is an enzyme involved in purine metabolism and a growth factor that influences the development of endothelial cells and leukocytes. This study shows that defects in ADA2 cause recurrent fevers, vascular pathologic features, and mild immunodeficiency. Patients with autoinflammatory disease sometimes present with clinical findings that encompass multiple organ systems.(1) Three unrelated children presented to the National Institutes of Health (NIH) Clinical Center with intermittent fevers, recurrent lacunar strokes, elevated levels of acute-phase reactants, livedoid rash, hepatosplenomegaly, and hypogammaglobulinemia. Collectively, these findings do not easily fit with any of the known inherited autoinflammatory diseases. Hereditary or acquired vascular disorders can have protean manifestations yet be caused by mutations in a single gene. Diseases such as the Aicardi-Goutieres syndrome,(2),(3) polypoidal choroidal vasculopathy,(4) sickle cell anemia,(5) livedoid vasculopathy,(6) and the small-vessel vasculitides(7),(8) are examples of systemic ...</p
A polyhedral approach to the single row facility layout problem
The Single Row Facility Layout Problem (SRFLP) is the NP-hard problem of arranging facilities on a line, while minimizing a weighted sum of the distances between facility pairs. In this paper, a detailed polyhedral study of the SRFLP is performed, and several huge classes of valid and facet-inducing inequalities are derived. Some separation heuristics are presented, along with a primal heuristic based on multidimensional scaling. Finally, a branch-and-cut algorithm is described and some encouraging computational results are given