62 research outputs found

    Fast H.264 intra prediction for network video processing

    Get PDF
    This letter proposes a fast parallel and deeply pipelined architecture for realtime H. 264 intra 4x4 prediction capable of handling up to 32 High Definition video streams (1920x1080 @ 30 fps) simultaneously, while offering high flexibility and consuming only a fraction of resources available on modern FPGA's. The design has been validated on target using a state of the art Altera Stratix IV FPGA

    Towards improved 1-D settler modelling : calibration of the BĂŒrger model and case study

    Get PDF
    Recently, Burger et al. (2011) developed a new 1-D SST model which allows for more realistic predictions of the sludge settling behaviour than traditional 1-D models used to date. However, the addition of a compression function in this new 1-D model complicates the model calibration. This study aims to report advances in the calibration of this novel 1-D model. Data of the evolution of the sludge blanket height during batch settling experiments were collected at different initial solids concentrations. Based on the linear slopes of the batch settling curves the hindered settling velocity functions by Vesilind (1968) and Takacs et al. (1991) were calibrated. Although both settling velocity functions gave a good fit to the experimental data, very large confidence intervals were found for the parameters of the settling velocity by Takacs. Global sensitivity analysis showed that it is not possible to find a unique set of parameter values for the settling function by Takacs based on experimental data of the hindered settling velocity. Subsequently, the calibrated Vesilind settling velocity was implemented in the 1-D model by Burger et al. (2011) and the parameters of the additional compression function were calibrated by fitting the model by Burger et al. (2011) to the batch settling curves. Simulation results showed that while the 1-D model by Takacs et al. (1991) underpredicted the experimental data of sludge blanket heights, the model by Burger et al. (2011) was able to predict the experimental data far more accurately. However, a global sensitivity analysis showed that no unique optimum for the combined set of hindered and compression parameters could be found

    The impact of local hydrodynamics on high-rate activated sludge flocculation in laboratory and full-scale reactors

    Get PDF
    High rate activated sludge (HRAS) processes have a high potential for carbon and energy recovery from sewage, yet they suffer frequently from poor settleability due to flocculation issues. The process of flocculation is generally optimized using jar tests. However, detailed jar hydrodynamics are often unknown, and average quantities are used, which can significantly differ from the local conditions. The presented work combined experimental and numerical data to investigate the impact of local hydrodynamics on HRAS flocculation for two different jar test configurations (i.e., radial vs. axial impellers at different impeller velocities) and compared the hydrodynamics in these jar tests to those in a representative section of a full scale reactor using computational fluid dynamics (CFD). The analysis showed that the flocculation performance was highly influenced by the impeller type and its speed. The axial impeller appeared to be more appropriate for floc formation over a range of impeller speeds as it produced a more homogeneous distribution of local velocity gradients compared to the radial impeller. In contrast, the radial impeller generated larger volumes (%) of high velocity gradients in which floc breakage may occur. Comparison to local velocity gradients in a full scale system showed that also here, high velocity gradients occurred in the region around the impeller, which might significantly hamper the HRAS flocculation process. As such, this study showed that a model based approach was necessary to translate lab scale results to full scale. These new insights can help improve future experimental setups and reactor design for improved HRAS flocculation

    Mainstream short-cut N removal modelling: current status and perspectives

    Get PDF
    This work gives an overview of the state-of-the-art in modelling of short-cut processes for nitrogen removal in mainstream wastewater treatment and presents future perspectives for directing research efforts in line with the needs of practice. The modelling status for deammonification (i.e., anammox-based) and nitrite-shunt processes is presented with its challenges and limitations. The importance of mathematical models for considering N2O emissions in the design and operation of short-cut nitrogen removal processes is considered as well. Modelling goals and potential benefits are presented and the needs for new and more advanced approaches are identified. Overall, this contribution presents how existing and future mathematical models can accelerate successful full-scale mainstream short-cut nitrogen removal applications
    • 

    corecore