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INTRODUCTION 

The operation and control of secondary clarifiers is still an important performance-limiting 

factor in conventional wastewater treatment plants (WWTP). Indeed, the performance of 

secondary clarifiers affects the effluent quality as well as the biomass inventory in the entire 

treatment plant. As biomass is the driving force for conversion processes and should be present 

at the desired location for the process to function in an optimal way, secondary clarifier 

operation will affect the performance of the entire treatment plant.  

Furthermore, more intense rain events and longer draughts between rain events, caused by 

climate change, result in WWTPs that are temporarily overloaded both hydraulically and in 

terms of pollutant load. These peak events have a significant effect on the system’s biomass 

inventory. We therefore need to address the impacts of these new conditions by improving both 

infrastructure (improving design) and operational strategy and control. Mathematical modelling 

is a powerful tool to gain insight in how this is best accomplished. In this contribution we focus 

on operational optimization using simple ASM-based models (Henze et al., 2000). 
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Traditional layer models used to date for secondary clarifiers and available in most commercial 

simulation platforms (e.g. the model due to Takács et al. (1991)) do not sufficiently capture the 

settling dynamics. Under normal dry weather operating conditions, these models may behave 

reasonably well. However, their predictions under situations that diverge from normal operating 

conditions (e.g. peak flows due to rain events) loose realism. This is unsurprising since these 

models were not developed for the purpose we envision here, i.e. proper prediction of 

underflow and effluent concentrations and sludge blanket height under peak flow conditions. 

With this specific goal in mind, we require a more sophisticated model. 

A new 1-D model which allows improved and more realistic simulation of secondary clarifiers 

has recently been presented (Bürger et al., 2011; Bürger et al., 2012). All implementation details 

can be found in Bürger et al. (submitted). This new model is based on the numerical solution of a 

governing partial differential equation (PDE) by appropriate methods. 

The specific objective of this study is to calibrate this new 1-D model for a full-scale WWTP 

based on well-known settling velocity testing. Moreover, we illustrate the specific added value of 

the model’s features on the predictions of biomass concentrations under both dry weather and 

storm weather conditions.  

 

MATHEMATICAL MODEL 

The new 1-D settling model is based on the following spatially one-dimensional PDE for the 

biomass C at time t and depth z from the feed level: 

���� = − ��� �	�, �, �� + 
�	����	��� �	�� , 
in which the first term on the right-hand side represents convective transport (due to feed flow, 

underflow and overflow) as well as particle transport due to gravity settling. The second term on 

the right hand side is a singular source term modelling the feed mechanism. (Q is volumetric 

flow rate, A is the constant cross-sectional area.) 



 

To numerically solve the PDE, it is discretised by dividing the tank into a user-defined number of 

layers (N) around which a proper solids balance is imposed. The numerical solution of this PDE 

is quite challenging since the flux F(C,z,t) is a discontinuous function of z. Simulating secondary 

clarifiers requires thus the implementation of a numerical scheme that deals with this 

discontinuous function in a mathematically correct way. Bürger et al. (2012) established this by 

computing the settling flux between two adjacent layers using the mathematically sound 

Godunov flux. This ensures that by increasing the number of layers, the numerical solution 

becomes more accurate and converges to the physically correct solution of the PDE. This is not 

the case for the traditional layer models used to date (e.g. Takács’ model). In the Bürger model, 

the number of layers N can thus be set by the user depending on the desired accuracy and on the 

computational time available. Some guidance with respect to this will be provided in the full 

paper. 

 

Additionally, the approach allows accounting for sediment compressibility and inlet mixing 

phenomena by extending the PDE by a compression function (dcomp) and a dispersion function 

(ddisp) which can be switched on or off by the user depending on the model study requirements. 

The resulting extended PDE is 

���� = − ��� �	�, �, �� + ��� �� �����	�� + �����	�, 
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This study focuses specifically on the added value of the compression function since this has a 

significant impact on the prediction of the return sludge concentration and the height of the 

sludge blanket in the settler, which are two important operation and control variables during a 

storm weather event.  

 

The following constitutive function is one way to describe the sediment compressibility with 

only two parameters.  
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With ρs and ρf the densities of the solids and the fluid, respectively, g the constant of gravity, vs 

the settling velocity and α a compression parameter. 

Compression will become active once the concentration exceeds a critical concentration (Ccrit). 

Hence, the parameters α and Ccrit together with those in the settling function vs should be 

calibrated to fit the compressive and settling behaviour of a certain set of sludge. By measuring 

concentration profiles during batch experiments, De Clercq et al. (2008) have shown that letting 

Ccrit depend on time during batch sedimentation, a better fit is obtained. Of course, this time-

dependence should have some physical or biological explanation, which is not known yet. 

 

CASE STUDY: THE EINDHOVEN WWTP 

With a treatment capacity of 750,000 population equivalents (PE), the WWTP of Eindhoven (The 

Netherlands) is the largest treatment plant of Waterboard De Dommel and the third largest in 

The Netherlands. The incoming wastewater is treated in three parallel lines with a maximum 

hydraulic load of 26,000 m³/h, each containing a primary settler, a biological tank and four 

secondary clarifiers. The biological tanks comprise a modified UCT configuration 

(Tchobanoglous et al. 2004). A process model of the plant, including the model by Takács to 

describe the secondary clarifiers, has been set up and calibrated for dry weather on an extensive 

set of online sensor data, in WEST (http://www.mikebydhi.com, Denmark; Vanhooren et al. 

2003).  

Although performing excellent in dry weather conditions, the full-scale plant model failed to give 

accurate predictions during storm weather conditions. Further study of the results showed that 

the model was not able to predict the dynamic sludge balance (division of sludge over biological 

tanks and secondary clarifiers), which is significantly distorted during storm weather 



conditions. Therefore, the more sophisticated Bürger model needs to be incorporated in the full-

scale plant model to better predict the performance of the WWTP under storm weather 

conditions.  

 

RESULTS AND DISCUSSION 

Batch settling tests at different sludge concentrations were performed in the lab and the 

resulting data used to calibrate the traditional 10-layer settling model by Takács et al. (1991) 

and the new Bürger model. Figure 1 shows the data (symbols) and the corresponding 

predictions (solid lines) using the model by Takács. It can be seen that the Takács model is not 

able to accurately predict the settling data with one set of parameters for the different initial 

concentrations. Since the Takács model only accounts for hindered settling, the sludge will settle 

unrealistically well causing a severe under prediction of the suspension/liquid interface (sludge 

blanket height) at higher sludge concentrations. 

   

 

 

Figure 2 shows the same settling data (symbols) predicted by the Bürger model (solid lines) 

with the additional compression function active. By accounting for compressive settling, the 



height of the sludge blanket can be modeled in a more realistic way for all initial concentrations 

using a single set of model parameters.  

This feature is especially interesting to use when variations in underflow concentrations occur 

(e.g. during storm events) as this will affect the biosolids concentration in the bioreactors and, 

hence, the conversion rates, which might lead modelers to calibrate kinetic parameters for a 

completely wrong reason and ruin the model’s predictive power in e.g. a scenario analysis.  

 

 

These results show that the new 1-D settler model allows describing the settling dynamics much 

more accurately with limited calibration effort. Obviously, further testing on other data sets is 

required, but these first results look very promising. 

The presented calibrated clarifier model of Bürger will now be implemented in the full-scale 

model of the Eindhoven treatment plant in order to obtain better predictions of the settling 

behaviour under storm weather conditions. It will also be checked whether further calibration is 

needed. 
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