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Abstract: A new 1-D model for the secondary clarifier was recently presented. The decisive 

difference to traditional layer models is that every detail of the implementation is in accordance with 

existing PDE theory. Moreover this new model does not only focus on hindered settling but also allows 

accounting for compressive settling. In this contribution, the behaviour of this new settler model is 

compared with the traditional settler model of Takács et al (1991) in terms of the impact on underflow 

predictions, sludge inventory in the plant and control actions by using the Benchmark Simulation 

Model n° 1. The numerical results show that the new settler model allows for more realistic predictions 

of the underflow concentration. The improved model clearly has a profound impact on the operation 

and control of the entire treatment plant and is recommended to be used as of now in WWTP 

modelling. 
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INTRODUCTION 

The operation and control of secondary clarifiers is still an important performance-

limiting factor in conventional wastewater treatment plants (WWTP). Indeed, the 

performance of secondary clarifiers affects the effluent quality as well as the biomass 

inventory and distribution in the plant. As biomass is the driving force for conversion 

processes, secondary clarifier operation affects plant performance.  

 

Traditional layer models used to date for secondary clarifiers and available in most 

commercial simulation platforms (e.g. the model by Takács et al. (1991)) do not 

sufficiently capture the settling dynamics. Under normal dry weather operating 

conditions, these models may behave reasonably well. However, their predictions 

under situations that diverge from normal operating conditions (e.g. peak flows due to 

rain events) loose realism. More recently 1-D models have been developed which try 

to explicitly account for dispersion and compression effects by incorporating a second 

order term in their PDE (Hamilton et al., 1992; Watts et al., 1996; Plósz et al.,2007). 

The drawback of this approach is that all the previously unmodelled phenomena are in 

these models lumped into one single term which is still too coarse to be able to 

sufficiently capture the true settling dynamics. Moreover, such an approach lacks 

flexibility. 

 

A new 1-D model allowing improved and more realistic simulations of secondary 

clarifiers has recently been presented (Bürger et al., 2011; Bürger et al., 2012). All 

implementation details can be found in Bürger et al. (2013). This new model is based 

on the numerical solution of its governing partial differential equation (PDE) by 

appropriate methods. 
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The specific objective of this study is to investigate the effect of this newly proposed 

settler model on operation and control using the Benchmark Simulation Model n° 1 

(BSM 1) (Copp, 2002). Moreover, we elucidate the specific added value of the settler 

model’s features on the predictions of biomass concentrations throughout the system. 

The obtained results are compared to the case where the Takács model is used. 

 

MATHEMATICAL MODEL 

The new 1-D settling model is based on a spatially one-dimensional PDE for the 

biomass C at time t and depth z from the feed level. Additionally, the approach allows 

accounting for sediment compressibility and inlet mixing phenomena by extending 

the PDE with a compression function (dcomp) and a dispersion function (ddisp) which 

can be switched on or off by the user depending on the model study requirements. The 

resulting PDE is: 

  

  
   

 

  
         

 

  
                          

  

  
  

          

 
     

where the first term on the right-hand side represents convective transport (due to feed 

flow, underflow and overflow) as well as particle transport due to gravity settling. The 

second term includes the compression and dispersion functions. The last term is a 

singular source term modelling the feed mechanism (Qf is volumetric flow rate, A is 

the constant cross-sectional area). To numerically solve this PDE, it is discretised by 

dividing the tank into a user-defined number of layers (N) around which a proper 

solids balance is imposed. The numerical method is presented in detail by Bürger et 

al. (2013). As the number of layers increases, the numerical solution becomes more 

accurate and converges to the physically correct solution of the PDE. This is not the 

case for the traditional layer models used to date (e.g. the model by Takács et al., 

1991).  

 

This study focuses specifically on the added value of the compression function since 

sediment compressibility significantly influences the prediction of the return sludge 

concentration and the height of the sludge blanket in the settler, which are two 

important operation and control variables during a storm weather event or when 

operating under higher solids loads. The following constitutive function is one way to 

describe the sediment compressibility with only two parameters:  

          

                                                      
            

        
                                      

  

Here ρs and ρf are the densities of the solids and the fluid, respectively, g is the 

constant of gravity, vs the settling velocity function and α a compression parameter. 

The compression term is active wherever the concentration exceeds a critical 

concentration (Ccrit).  
 

RESULTS AND DISCUSSION 

The results shown in this contribution were obtained by simulating the Benchmark 

Simulation Model n° 1 with different settler models in WEST 

(http://www.mikebydhi.com, Denmark). All simulations were performed under storm 

weather conditions and used the double exponential settling velocity function of 



Takács et al. (1991) with default BSM1 parameters. The parameters of the 

compression function were chosen as: ρs=1050 kg/m³, ρf= 998 kg/m³, α=0.8 m²/s², 

Ccrit=4 kg/m³. 

 

Figure 1 demonstrates the effect of adding compression on the predictions of the 

underflow concentration (left) and the sludge blanket height (right). By accounting for 

compressive settling, the sludge blanket level can be modelled in a more realistic way. 

An increased solids loading to the clarifier will cause the sludge blanket to rise and 

result in a modest increase in underflow concentration. These trends correspond to 

observations made in reality. Figure 2 (left) shows on-line clarifier data from the 

WWTP of Eindhoven (The Netherlands). When a hydraulic peak hits the clarifier, its 

effect will mainly be seen by an increase in the sludge blanket height. This contrasts 

with a very drastic increase in the underflow concentration and almost no effect on the 

sludge blanket in the currently used 10-layer models (Figure 1, right).  

Adding compression settling is thus especially interesting to use when variations in 

underflow concentrations occur (e.g. storm events) as this will affect the biomass 

concentration in the bioreactors (Figure 2, right) and, hence, the conversion rates, 

which might “force” modellers to calibrate biomass kinetic parameters for the wrong 

reasons.  

  
Figure 1: Dynamic simulation of the underflow concentration (left) and the sludge blanket height (right) under 
storm weather conditions. 

  
Figure 2: On-line data of sludge blanket height (SBH), underflow concentration (Xu) and inflow rate (Qin) from 
the WWTP of Eindhoven (left) and dynamic simulation results of the BSM1 MLSS concentration in the first 
activated sludge tank (right). 

Figure 2 (right) shows the different predictions for the Total Suspended Solids 

concentration (TSS) in the first Activated Sludge Unit (ASU 1). Adding compression 

settling increases the effect of a storm peak on the MLSS concentration. Due to the 

dampening effect of compression on the underflow concentration, less sludge is 

returned to the biological reactor resulting in less recovery and a more pronounced 

effect of the storm peak. This implies that traditional settler models, which do not 

account for compressive settling, might underestimate the effect of a storm event. 

 



As the sludge inventory and distribution is the driving force behind the performance 

of a WWTP, a pronounced difference in the predictions of the biomass concentrations 

will also influence plant-wide control strategies. To investigate the significance of this 

influence, a control strategy was implemented to maintain the MLSS concentration at 

a desired level. Since the recycle flow will have a profound impact on the biomass 

concentration in the biological reactor, a PI controller (Kc=100 and τI=1) was 

implemented that controls the MLSS concentration at a desired setpoint (2800 g/m³) 

by manipulating the underflow rate based on a measurement of the MLSS 

concentration in ASU 1. The limits for manipulation of the underflow rate are set to 

0.33 and 1.5 times the incoming flow rate (Tchobanoglous et al. 2003).  

 

The resulting manipulations in the underflow concentration and the predictions of the 

MLSS concentration are shown in Figure 3. It can be seen that implementing the same 

controller with two different settler models results in quite deviating control actions 

on the underflow rate.  

  
Figure 2: Dynamic simulation with the implementation of an MLSS control strategy. Manipulation in underflow 
rate (left) and MLSS concentration in the first activated sludge tank (right) under storm weather conditions. 

It can thus be concluded that the choice of the settler model not only influences the 

predictions of the settling process itself but also significantly impacts the system’s 

sludge inventory and related control actions in the entire system. Hence, it impacts 

controller design and evaluation of strategies which the BSM frameworks were 

designed for. Therefore, we need to step away from traditional layer models towards 

models that reflect more realism by accounting for both hindered and compression 

settling. Moreover, convergence of the numerical solution is ensured at all times. The 

additional computational cost can nowadays be borne by IT infrastructure. 
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