76 research outputs found

    Fly-The-Bee: A Game Imitating Concept Learning in Bees

    Get PDF
    AbstractThis article presents a web-based game functionally imitating a part of the cognitive behavior of a living organism. This game is a prototype implementation of an artificial online cognitive architecture based on the usage of distributed data representations and Vector Symbolic Architectures. The game demonstrates the feasibility of creating a lightweight cognitive architecture, which is capable of performing rather complex cognitive tasks. The cognitive functionality is implemented in about 100 lines of code and requires few tens of kilobytes of memory for its operation, which make the concept suitable for implementing in low-end devices such as minirobots and wireless sensors

    Retinoid Machinery in Distinct Neural Stem Cell Populations with Different Retinoid Responsiveness

    Get PDF
    Retinoic acid (RA) is present at sites of neurogenesis in both the embryonic and adult brain. While it is widely accepted that RA signaling is involved in the regulation of neural stem cell differentiation, little is known about vitamin A utilization and biosynthesis of active retinoids in the neurogenic niches, or about the details of retinoid metabolism in neural stem cells and differentiating progenies. Here we provide data on retinoid responsiveness and RA production of distinct neural stem cell/neural progenitor populations. In addition, we demonstrate differentiation-related changes in the expression of genes encoding proteins of the retinoid machinery, including components responsible for uptake (Stra6) and storage (Lrat) of vitamin A, transport of retinoids (Rbp4, CrbpI, CrabpI-II), synthesis (Rdh10, Raldh1-4), degradation of RA (Cyp26a1-c1) and RA signaling (Raralpha,beta,gamma, Rxralpha,beta,gamma). We show that both early embryonic neuroectodermal (NE-4C) stem cells and late embryonic or adult derived radial glia like progenitors (RGl cells) are capable to produce bioactive retinoids but respond differently to retinoid signals. However, while neuronal differentiation of RGl cells can not be induced by RA, neuron formation by NE-4C cells is initiated by both RA and RA-precursors (retinol or retinyl acetate). The data indicate that endogenous RA production, at least in some neural stem cell populations, may result in autocrine regulation of neuronal differentiation

    Electron-ion recombination of Si IV forming Si III: Storage-ring measurement and multiconfiguration Dirac-Fock calculations

    Get PDF
    The electron-ion recombination rate coefficient for Si IV forming Si III was measured at the heavy-ion storage-ring TSR. The experimental electron-ion collision energy range of 0-186 eV encompassed the 2p(6) nl n'l' dielectronic recombination (DR) resonances associated with 3s to nl core excitations, 2s 2p(6) 3s nl n'l' resonances associated with 2s to nl (n=3,4) core excitations, and 2p(5) 3s nl n'l' resonances associated with 2p to nl (n=3,...,infinity) core excitations. The experimental DR results are compared with theoretical calculations using the multiconfiguration Dirac-Fock (MCDF) method for DR via the 3s to 3p n'l' and 3s to 3d n'l' (both n'=3,...,6) and 2p(5) 3s 3l n'l' (n'=3,4) capture channels. Finally, the experimental and theoretical plasma DR rate coefficients for Si IV forming Si III are derived and compared with previously available results.Comment: 13 pages, 9 figures, 3 tables. Accepted for publication in Physical Review

    Sonic hedgehog expression in zebrafish forebrain identifies the teleostean pallidal signaling center and shows preglomerular complex and posterior tubercular dopamine cells to arise from shh cells

    Get PDF
    Ventralization, a major patterning process in the developing vertebrate neural tube (central nervous system, CNS), depends on Sonic hedgehog (SHH) as a main signaling morphogen. We studied the CNS of late larval and young adult zebrafish in a transgenic shh‐GFP line revealing increased neuroanatomical detail due to the progressed differentiation state compared to earlier stages. Some major findings emerge from the present study. (a) shh –GFP is still expressed along the adult zebrafish CNS neuraxis in most locations seen in larvae. (b) We newly identify a ventroposterior shh pallidal domain representing the basal telencephalic signaling center important for basal ganglia development known in other vertebrates (i.e., the anterior entopeduncular area—basal medial ganglionic eminence of mammals). (c) We further show late‐emerging shh‐GFP positive radial glia cells in the medial zone of the dorsal telencephalon (i.e., the teleostan pallial amygdala). (d) Immunostains for tyrosine hydroxylase demonstrate that there is selective colocalization in adult dopamine cells with shh‐GFP in the posterior tuberculum, including in projection cells to striatum, which represents a striking parallel to amniote mesodiencephalic dopamine cell origin from shh expressing floor plate cells. (e) There is no colocalization of shh and islet1 as shown by respective shh‐GFP and islet1‐GFP lines. (f) The only radially far migrated shh‐GFP cells are located in the preglomerular area. (g) There are no adult cerebellar and tectal shh‐GFP cells confirming their exclusive role during early development as previously reported by our laboratory

    LV-pIN-KDEL: a novel lentiviral vector demonstrates the morphology, dynamics and continuity of the endoplasmic reticulum in live neurones

    Get PDF
    BACKGROUND The neuronal endoplasmic reticulum (ER) is an extensive, complex endomembrane system, containing Ca2+ pumps, and Ca2+ channels that permit it to act as a dynamic calcium store. Currently, there is controversy over the continuity of the ER in neurones, how this intersects with calcium signalling and the possibility of physical compartmentalisation. Unfortunately, available probes of ER structure such as vital dyes are limited by their membrane specificity. The introduction of ER-targeted GFP plasmids has been a considerable step forward, but these are difficult to express in neurones through conventional transfection approaches. To circumvent such problems we have engineered a novel ER-targeted GFP construct, termed pIN-KDEL, into a 3rd generation replication-defective, self-inactivating lentiviral vector system capable of mediating gene transduction in diverse dividing and post-mitotic mammalian cells, including neurones. RESULTS Following its expression in HEK293 (or COS-7) cells, LV-pIN-KDEL yielded a pattern of fluorescence that co-localised exclusively with the ER marker sec61beta but with no other major organelle. We found no evidence for cytotoxicity and only rarely inclusion body formation. To explore the utility of the probe in resolving the ER in live cells, HEK293 or COS-7 cells were transduced with LV-pIN-KDEL and, after 48 h, imaged directly at intervals from 1 min to several hours. LV-pIN-KDEL fluorescence revealed the endoplasmic reticulum as a tubular lattice structure whose morphology can change markedly within seconds. Although GFP can be phototoxic, the integrity of the cells and ER was retained for several weeks and even after light exposure for periods up to 24 h. Using LV-pIN-KDEL we have imaged the ER in diverse fixed neuronal cultures and, using real-time imaging, found evidence for extensive, dynamic remodelling of the neuronal ER in live hippocampal cultures, brain slices, explants and glia. Finally, through a Fluorescence Loss in Photobleaching (FLIP) approach, continuous irradiation at a single region of interest removed all the fluorescence of LV-pIN-KDEL-transduced nerve cells in explant cultures, thus, providing compelling evidence that in neurons the endoplasmic reticulum is not only dynamic but also continuous. CONCLUSION The lentiviral-based ER-targeted reporter, LV-pIN-KDEL, offers considerable advantages over present systems for defining the architecture of the ER, especially in primary cells such as neurones that are notoriously difficult to transfect. Images and continuous photobleaching experiments of LV-pIN-KDEL-transduced neurones demonstrate that the endoplasmic reticulum is a dynamic structure with a single continuous lumen. The introduction of LV-pIN-KDEL is anticipated to greatly facilitate a real-time visualisation of the structural plasticity and continuous nature of the neuronal ER in healthy and diseased brain tissue

    Evidence That Descending Cortical Axons Are Essential for Thalamocortical Axons to Cross the Pallial-Subpallial Boundary in the Embryonic Forebrain

    Get PDF
    Developing thalamocortical axons traverse the subpallium to reach the cortex located in the pallium. We tested the hypothesis that descending corticofugal axons are important for guiding thalamocortical axons across the pallial-subpallial boundary, using conditional mutagenesis to assess the effects of blocking corticofugal axonal development without disrupting thalamus, subpallium or the pallial-subpallial boundary. We found that thalamic axons still traversed the subpallium in topographic order but did not cross the pallial-subpallial boundary. Co-culture experiments indicated that the inability of thalamic axons to cross the boundary was not explained by mutant cortex developing a long-range chemorepulsive action on thalamic axons. On the contrary, cortex from conditional mutants retained its thalamic axonal growth-promoting activity and continued to express Nrg-1, which is responsible for this stimulatory effect. When mutant cortex was replaced with control cortex, corticofugal efferents were restored and thalamic axons from conditional mutants associated with them and crossed the pallial-subpallial boundary. Our study provides the most compelling evidence to date that cortical efferents are required to guide thalamocortical axons across the pallial-subpallial boundary, which is otherwise hostile to thalamic axons. These results support the hypothesis that thalamic axons grow from subpallium to cortex guided by cortical efferents, with stimulation from diffusible cortical growth-promoting factors

    Inferring the Transcriptional Landscape of Bovine Skeletal Muscle by Integrating Co-Expression Networks

    Get PDF
    Background: Despite modern technologies and novel computational approaches, decoding causal transcriptional regulation remains challenging. This is particularly true for less well studied organisms and when only gene expression data is available. In muscle a small number of well characterised transcription factors are proposed to regulate development. Therefore, muscle appears to be a tractable system for proposing new computational approaches. Methodology/Principal Findings: Here we report a simple algorithm that asks "which transcriptional regulator has the highest average absolute co-expression correlation to the genes in a co-expression module?" It correctly infers a number of known causal regulators of fundamental biological processes, including cell cycle activity (E2F1), glycolysis (HLF), mitochondrial transcription (TFB2M), adipogenesis (PIAS1), neuronal development (TLX3), immune function (IRF1) and vasculogenesis (SOX17), within a skeletal muscle context. However, none of the canonical pro-myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6 and MEF2C) were linked to muscle structural gene expression modules. Co-expression values were computed using developing bovine muscle from 60 days post conception (early foetal) to 30 months post natal (adulthood) for two breeds of cattle, in addition to a nutritional comparison with a third breed. A number of transcriptional landscapes were constructed and integrated into an always correlated landscape. One notable feature was a 'metabolic axis' formed from glycolysis genes at one end, nuclear-encoded mitochondrial protein genes at the other, and centrally tethered by mitochondrially-encoded mitochondrial protein genes. Conclusions/Significance: The new module-to-regulator algorithm complements our recently described Regulatory Impact Factor analysis. Together with a simple examination of a co-expression module's contents, these three gene expression approaches are starting to illuminate the in vivo transcriptional regulation of skeletal muscle development

    Lateral cortical Cdca7 expression levels are regulated by Pax6 and influence the production of intermediate progenitors

    Get PDF
    Abstract Background We studied whether regulation of Cdca7 (Cell division cycle associated 7) expression by transcription factor Pax6 contributes to Pax6’s cellular actions during corticogenesis. The function of Cdca7 in mediating Pax6’s effects during corticogenesis has not been explored. Pax6 is expressed by radial glial progenitors in the ventricular zone of the embryonic cortical neuroepithelium, where it is required for the development of a normal complement of Tbr2-expressing intermediate progenitor cells in the subventricular zone. Pax6’s expression levels are graded across the ventricular zone, with highest levels laterally where Tbr2-expressing progenitors are generated in greatest numbers at early stages of corticogenesis. Methods We used in situ hybridization and immunohistochemistry to analyse patterns of Cdca7 and Pax6 expression in cortical tissue from wild-type and Pax6 −/− embryos. In each genotype we compared the graded expression of the two genes quantitatively at several ages. To test whether defects in Cdca7 expression in lateral cortical cells might contribute to the cellular defects in this region caused by Pax6 loss, we electroporated a Cdca7 expression vector into wild-type lateral cortex and examined the effect on the production of Tbr2-expressing cells. Results We found that Cdca7 is co-expressed with Pax6 in cortical progenitors, at levels opposite to those of Pax6. Lowest levels of Cdca7 are found in the radial glial progenitors of lateral cortex, where Pax6 levels are highest. Higher levels of Cdca7 are found in ventral telencephalon, where Pax6 levels are low. Loss of Pax6 causes Cdca7 expression to increase in the lateral cortex. Elevating Cdca7 in normal lateral cortical progenitors to levels close to those normally found in ventral telencephalon reduces their production of Tbr2-expressing cells early in lateral cortical formation. Conclusion Our results suggest that Pax6 normally represses Cdca7 expression in the lateral cortex and that repression of Cdca7 in cells of this region is required for their production of a normal complement of Tbr2-expressing intermediate progenitors
    corecore