10 research outputs found

    Optimizing transportation systems and logistics network configurations : From biased-randomized algorithms to fuzzy simheuristics

    Get PDF
    242 páginasTransportation and logistics (T&L) are currently highly relevant functions in any competitive industry. Locating facilities or distributing goods to hundreds or thousands of customers are activities with a high degree of complexity, regardless of whether facilities and customers are placed all over the globe or in the same city. A countless number of alternative strategic, tactical, and operational decisions can be made in T&L systems; hence, reaching an optimal solution –e.g., a solution with the minimum cost or the maximum profit– is a really difficult challenge, even by the most powerful existing computers. Approximate methods, such as heuristics, metaheuristics, and simheuristics, are then proposed to solve T&L problems. They do not guarantee optimal results, but they yield good solutions in short computational times. These characteristics become even more important when considering uncertainty conditions, since they increase T&L problems’ complexity. Modeling uncertainty implies to introduce complex mathematical formulas and procedures, however, the model realism increases and, therefore, also its reliability to represent real world situations. Stochastic approaches, which require the use of probability distributions, are one of the most employed approaches to model uncertain parameters. Alternatively, if the real world does not provide enough information to reliably estimate a probability distribution, then fuzzy logic approaches become an alternative to model uncertainty. Hence, the main objective of this thesis is to design hybrid algorithms that combine fuzzy and stochastic simulation with approximate and exact methods to solve T&L problems considering operational, tactical, and strategic decision levels. This thesis is organized following a layered structure, in which each introduced layer enriches the previous one.El transporte y la logística (T&L) son actualmente funciones de gran relevancia en cual quier industria competitiva. La localización de instalaciones o la distribución de mercancías a cientos o miles de clientes son actividades con un alto grado de complejidad, indepen dientemente de si las instalaciones y los clientes se encuentran en todo el mundo o en la misma ciudad. En los sistemas de T&L se pueden tomar un sinnúmero de decisiones al ternativas estratégicas, tácticas y operativas; por lo tanto, llegar a una solución óptima –por ejemplo, una solución con el mínimo costo o la máxima utilidad– es un desafío realmente di fícil, incluso para las computadoras más potentes que existen hoy en día. Así pues, métodos aproximados, tales como heurísticas, metaheurísticas y simheurísticas, son propuestos para resolver problemas de T&L. Estos métodos no garantizan resultados óptimos, pero ofrecen buenas soluciones en tiempos computacionales cortos. Estas características se vuelven aún más importantes cuando se consideran condiciones de incertidumbre, ya que estas aumen tan la complejidad de los problemas de T&L. Modelar la incertidumbre implica introducir fórmulas y procedimientos matemáticos complejos, sin embargo, el realismo del modelo aumenta y, por lo tanto, también su confiabilidad para representar situaciones del mundo real. Los enfoques estocásticos, que requieren el uso de distribuciones de probabilidad, son uno de los enfoques más empleados para modelar parámetros inciertos. Alternativamente, si el mundo real no proporciona suficiente información para estimar de manera confiable una distribución de probabilidad, los enfoques que hacen uso de lógica difusa se convier ten en una alternativa para modelar la incertidumbre. Así pues, el objetivo principal de esta tesis es diseñar algoritmos híbridos que combinen simulación difusa y estocástica con métodos aproximados y exactos para resolver problemas de T&L considerando niveles de decisión operativos, tácticos y estratégicos. Esta tesis se organiza siguiendo una estructura por capas, en la que cada capa introducida enriquece a la anterior. Por lo tanto, en primer lugar se exponen heurísticas y metaheurísticas sesgadas-aleatorizadas para resolver proble mas de T&L que solo incluyen parámetros determinísticos. Posteriormente, la simulación Monte Carlo se agrega a estos enfoques para modelar parámetros estocásticos. Por último, se emplean simheurísticas difusas para abordar simultáneamente la incertidumbre difusa y estocástica. Una serie de experimentos numéricos es diseñada para probar los algoritmos propuestos, utilizando instancias de referencia, instancias nuevas e instancias del mundo real. Los resultados obtenidos demuestran la eficiencia de los algoritmos diseñados, tanto en costo como en tiempo, así como su confiabilidad para resolver problemas realistas que incluyen incertidumbre y múltiples restricciones y condiciones que enriquecen todos los problemas abordados.Doctorado en Logística y Gestión de Cadenas de SuministrosDoctor en Logística y Gestión de Cadenas de Suministro

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    The location routing problem with facility sizing decisions

    Get PDF
    The location routing problem (LRP) integrates operational decisions on vehicle routing operations with strategic decisions on the location of the facilities or depots from which the distribution will take place. In other words, it combines the well-known vehicle routing problem (VRP) with the facility location problem (FLP). Hence, the LRP is an NP-hard combinatorial optimization problem, which justifies the use of metaheuristic approaches whenever large-scale instances need to be solved. In this paper, we explore a realistic version of the LRP in which facilities of different capacities are considered, i.e., the manager has to consider not only the location but also the size of the facilities to open. In order to tackle this optimization problem, three mixed-integer linear formulations are proposed and compared. As expected, they have been proved to be cost- and time- inefficient. Hence, a biased-randomized iterated local search algorithm is proposed. Classical instances for the LRP with homogeneous facilities are naturally extended to test the performance of our approach.Peer ReviewedPostprint (published version

    Waste collection of medical items under uncertainty using internet of things and city open data repositories: a simheuristic approach

    Get PDF
    © 2022. IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn a pandemic situation, a large quantity of medical items are being consumed by citizens globally. If not properly processed, these items can be pollutant or even dangerous. Inspired by a real case study in the city of Barcelona, and assuming that data from container sensors are available in the city open repository, this work addresses a medical waste collection problem both with and without uncertainty. The waste collection process is modeled as a rich open vehicle routing problem, where the constraints are not in the loading dimension but in the maximum time each vehicle can circulate without having to perform a mandatory stop, with the goal of minimizing the time required to complete the collection process. To provide high-quality solutions to this complex problem, a biased-randomized heuristic is proposed. This heuristic is combined with simulation to provide effective collection plans in scenarios where travel and pickup times are uncertainPeer ReviewedPostprint (author's final draft

    A multi-start biased-randomized algorithm for the capacitated dispersion problem

    Get PDF
    The capacitated dispersion problem is a variant of the maximum diversity problem in which a set of elements in a network must be determined. These elements might represent, for instance, facilities in a logistics network or transmission devices in a telecommunication network. Usually, it is considered that each element is limited in its servicing capacity. Hence, given a set of possible locations, the capacitated dispersion problem consists of selecting a subset that maximizes the minimum distance between any pair of elements while reaching an aggregated servicing capacity. Since this servicing capacity is a highly usual constraint in real-world problems, the capacitated dispersion problem is often a more realistic approach than is the traditional maximum diversity problem. Given that the capacitated dispersion problem is an NP-hard problem, whenever large-sized instances are considered, we need to use heuristic-based algorithms to obtain high-quality solutions in reasonable computational times. Accordingly, this work proposes a multi-start biased-randomized algorithm to efficiently solve the capacitated dispersion problem. A series of computational experiments is conducted employing small-, medium-, and large-sized instances. Our results are compared with the best-known solutions reported in the literature, some of which have been proven to be optimal. Our proposed approach is proven to be highly competitive, as it achieves either optimal or near-optimal solutions and outperforms the non-optimal best-known solutions in many cases. Finally, a sensitive analysis considering different levels of the minimum aggregate capacity is performed as well to complete our study.Peer ReviewedPostprint (published version

    Combining heuristics with simulation and fuzzy logic to solve a flexible-size location routing problem under uncertainty

    Get PDF
    The location routing problem integrates both a facility location and a vehicle routing problem. Each of these problems are NP-hard in nature, which justifies the use of heuristic-based algorithms when dealing with large-scale instances that need to be solved in reasonable computing times. This paper discusses a realistic variant of the problem that considers facilities of different sizes and two types of uncertainty conditions. In particular, we assume that some customers’ demands are stochastic, while others follow a fuzzy pattern. An iterated local search metaheuristic is integrated with simulation and fuzzy logic to solve the aforementioned problem, and a series of computational experiments are run to illustrate the potential of the proposed algorithm.This work has been partially supported by the Spanish Ministry of Science (PID2019-111100RB-C21/AEI/10.13039/501100011033). In addition, it has received the support of the Doctoral School at the Universitat Oberta de Catalunya (Spain) and the Universidad de La Sabana (INGPhD-12-2020).Peer ReviewedPostprint (published version

    Aplicación y evaluación de una metodología basada en el procedimiento FePIA para caracterizar la relación robustez-costo en el problema de planeación de la capacidad y localización de almacenes en cadenas de suministro

    Get PDF
    El presente proyecto establece y evalúa una metodología basada en el procedimiento FePIA para caracterizar la relación robustez-costo en el problema de planeación de la capacidad y localización de almacenes en cadenas de suministros. Inicialmente se definieron los requerimientos de robustez, las características de desempeño y los parámetros de perturbación asociados al sistema estudiado. Luego se construyó un modelo de programación lineal que representara al sistema y con el cual se identificaron ciertas estructuras que adquiría el mismo. Para cada estructura se determinó el impacto de los parámetros de perturbación sobre los requerimientos de robustez y las características de desempeño. Finalmente, con estos resultados se concluyó que una cadena de suministros más robusta es más costosa, independientemente de la estructura considerada

    Revisión de estudios de caso de carácter cualitativo y exploratorio en logística inversa

    No full text
    This article presents a literature review on exploratory qualitative case studies developed in different industrial sectors in terms of Reverse Logistics (RL), this review was carried out throughout content analysis of literature published. Several databases were taken into consideration when finding out research articles related to topic. The articles were mainly classified according to economy sector boarded in their research study. On one hand, the review allows us to know those methodological tools which are used to carry out exploratory qualitative case studies; on the other hand it shows that studies based on empirical research allows us to know in depth the development and implementation of RL in the industry. It is suitable to mention that the different documents consulted enhance the importance of carrying out research based on qualitative methods to analyze issues related to RL.Neste artigo apresenta-se uma revisão de literatura sobre estudos de caso de caráter exploratório e qualitativo desenvolvidos em diferentes setores industriais na temática de Logística Inversa (LI) através da análise de conteúdo de bibliografia publicada. Usaram-se vários bases de dados para a busca de artigos de pesquisa relacionados com o tema do estudo. O quais foram classificados principalmente de acordo ao setor da economia abordado na sua pesquisa. A revisão levada a cabo permite conhecer quais são as ferramentas metodológicas utilizadas para o desenvolvimento de estudos de caso de caráter qualitativo e exploratório, e mostra que os estudos baseados na pesquisa empírica permitem conhecer a fundo o desenvolvimento e aplicação de LI na indústria. Além disso, os diversos trabalhos indagados destacam a importância de realizar pesquisas baseadas em métodos qualitativas para analisar os problemas relacionados com LI.Este artículo presenta una revisión de literatura sobre estudios de caso de carácter exploratorio y cualitativo desarrollados en diferentes sectores industriales en la temática de Logística Inversa (LI), a través del análisis de contenido de bibliografía publicada. Se hizo uso de varias bases de datos para la búsqueda de artículos de investigación relacionados con el tema objeto de estudio, los cuales fueron clasificados principalmente de acuerdo con el sector de la economía abordado en su investigación. La revisión llevada a cabo permite conocer qué herramientas metodológicas son utilizadas para el desarrollo de estudios de caso de carácter cualitativo y exploratorio, y muestra que los estudios basados en investigación empírica permiten conocer a fondo el desarrollo y aplicación de LI en la industria. Además, los diversos trabajos indagados resaltan la importancia de realizar investigaciones basadas en métodos cualitativos para analizar los problemas relacionados con LI

    Edge computing and IoT analytics for agile optimization in intelligent transportation systems

    Get PDF
    With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of Things (IoT) analytics refers to the use of these technologies, data, and analytical models to describe the current status of the city traffic, to predict its evolution over the coming hours, and to make decisions that increase the efficiency of the transportation system. It involves many challenges such as how to deal and manage real and huge amounts of data, and improving security, privacy, scalability, reliability, and quality of services in the cloud and vehicular network. In this paper, we review the state of the art of IoT in intelligent transportation systems (ITS), identify challenges posed by cloud, fog, and edge computing in ITS, and develop a methodology based on agile optimization algorithms for solving a dynamic ride-sharing problem (DRSP) in the context of edge/fog computing.These algorithms allow us to process, in real time, the data gathered from IoT systems in order to optimize automatic decisions in the city transportation system, including: optimizing the vehicle routing, recommending customized transportation modes to the citizens, generating efficient ride-sharing and car-sharing strategies, create optimal charging station for electric vehicles and different services within urban and interurban areas. A numerical example considering a DRSP is provided, in which the potential of employing edge/fog computing, open data, and agile algorithms is illustratedPeer ReviewedPostprint (published version

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    No full text
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines
    corecore