230 research outputs found

    Some reduced ternary and quaternary oxides of molybdenum containing strong metal-metal bonds

    Get PDF
    Several new, reduced ternary and quaternary oxides of molybdenum are reported, each containing molybdenum in an average oxidation state \u3c 4.0. All of these compounds contain either discrete molybdenum atom clusters or infinite chains of bonded molybdenum atoms;The compounds ScZnMo(,3)O(,8), LiZn(,2)Mo(,3)O(,8), and Zn(,3)Mo(,3)O(,8) have been synthesized and crystal structures have been determined for the latter two. These oxides contain the same type of triangular molybdenum atom clusters found in the compound Zn(,2)Mo(,3)O(,8) (McCarroll, W. H. ; Katz, L; Ward, J. J. Am. Chem. Soc. 1957, 79, 5410). However, each of the trimeric clusters in these new compounds has available one or two additional electrons for participation in metal-metal bonding;Another newly prepared and characterized ternary oxide containing discrete metal atom clusters is Ba(,1.14)Mo(,8)O(,16). The structure of this compound consists of molybdenum-oxide cluster chains extended parallel with the c axis. These chains are built from clusters of the type Mo(,4)O(,16) sharing the oxygen atoms on the four outer edges of the planar tetrameric molybdenum atom cluster to give an Mo(,4)O(,8) stoichiometry. Two different infinite chains, built up from Mo(,4)O(,8)(\u272-) and Mo(,4)O(,8)(\u270.28-) cluster units, respectively, are interlinked via Mo-O-Mo bridge bonding to create four-sided tunnels in which the Ba(\u272+) ions reside;The new compound NaMo(,4)O(,6) contains infinite chains of bonded molybdenum atom clusters. These chains are comprised of clusters of the type Mo(,6)O(,12) fused at opposite edges by removal of two edge-bridging oxygen atoms, and sharing of the metal and remaining oxygen atoms between cluster units. The sodium ions occupy sites in channels formed by four molybdenum-oxide cluster chains crosslinked by strong Mo-O-Mo bonds;Another new compound, whose structure is closely related to that of NaMo(,4)O(,6), is Ba(,0.62)Mo(,4)O(,6). This material also exhibits a superlattice ordering of barium ions within the channels. An analysis of this superstructure from single crystal x-ray diffraction data is discussed;Other compounds that have been prepared and also partiallycharacterized by chemical analyses and x-ray powder diffractiondata are tentatively formulated as K(,2+x)Mo(,12)O(,19), Na(,2+x)MO(,12)O(,19),and CaMo(,5)O(,8);(\u271)DOE Report IS-T-960. This work was performed under Contract W-7405-eng-82 with the Department of Energy

    Excitation Spectrum and Superexchange Pathways in the Spin Dimer VODPO_4 . 1/2 D_2O

    Full text link
    Magnetic excitations have been investigated in the spin dimer material VODPO_4 \cdot 1/2 D_2O using inelastic neutron scattering. A dispersionless magnetic mode was observed at an energy of 7.81(4) meV. The wavevector dependence of the scattering intensityfrom this mode is consistent with the excitation of isolated V^{4+} spin dimers with a V-V separation of 4.43(7) \AA. This result is unexpected since the V-V pair previously thought to constitute themagnetic dimer has a separation of 3.09 \AA. We identify an alternative V-V pair as the likely magnetic dimer, which involves superexchange pathways through a covalently bonded PO_4 group. This surprising result casts doubt on the interpretation of (VO)_2P_2O_7 as a spin ladder.Comment: 4 pages, 4 postscript figures - identical to previous paper but figure 2 and 3 hopefully more compatible .p

    Encapsulated Single Crystal Growth and Annealing of the High-Temperature Superconductor Tl-2201

    Full text link
    Highly-perfect platelet single crystals of Tl_2Ba_2CuO_{6+d} (Tl-2201) were grown by a self-flux technique. A novel encapsulation scheme allowed the precursors to react prior to the sealing required to contain volatile thallium oxides, and permitted the removal of melt at the conclusion of growth, reproducibly producing high yields of clean crystals. The crystals were annealed under well-controlled oxygen partial pressures, then characterised. They have sharp superconducting transitions, narrow X-ray rocking curves and a low 4% substitution of thallium by copper, all evidence of their high perfection and homogeneity. The crystals are orthorhombic at most dopings, and a previously unreported commensurate superlattice distortion is observed.Comment: 8 pages, 5 figures, submitted to Journal of Crystal Growt

    Redetermination of Zn2Mo3O8

    Get PDF
    The crystal structure of dizinc trimolybdenum(IV) octa­oxide, Zn2Mo3O8, has been redetermined from single-crystal X-ray data. The structure has been reported previously based on neutron powder diffraction data [Hibble et al. (1999 ▶). Acta Cryst. B55, 683-697] and single-crystal data [McCarroll et al. (1957 ▶). J. Am. Chem. Soc. 79, 5410–5414; Ansell & Katz (1966 ▶) Acta Cryst. 21, 482–485]. The results of the current redetermination show an improvement in the precision of the structural and geometric parameters with all atoms refined with anisotropic displacement parameters. The crystal structure consists of distorted hexa­gonal-close-packed oxygen layers with stacking sequence abac along [001] and is held together by alternating zinc and molybdenum layers. The Zn atoms occupy both tetra­hedral and octa­hedral inter­stices with a ratio of 1:1. The Mo atoms occupy octa­hedral sites and form strongly bonded triangular clusters involving three MoO6 octa­hedra that are each shared along two edges, forming a Mo3O13 unit. All atoms lie on special positions. The Zn atoms are in 2b Wyckoff positions with 3m. site symmetry, the Mo atoms are in 6c Wyckoff positions with . m. site symmetry and the O atoms are in 2a, 2b and 6c Wyckoff positions with 3m. and . m. site symmetries, respectively

    Band-structure trend in hole-doped cuprates and correlation with Tcmax

    Full text link
    By calculation and analysis of the bare conduction bands in a large number of hole-doped high-temperature superconductors, we have identified the energy of the so-called axial-orbital as the essential, material-dependent parameter. It is uniquely related to the range of the intra-layer hopping. It controls the Cu 4s-character, influences the perpendicular hopping, and correlates with the observed Tc at optimal doping. We explain its dependence on chemical composition and structure, and present a generic tight-binding model.Comment: 5 pages, Latex, 5 eps figure

    Determination of incommensurate modulated structure in Bi2Sr1.6La0.4CuO6+{\delta} by aberration-corrected transmission electron microscopy

    Full text link
    Incommensurate modulated structure (IMS) in Bi2Sr1.6La0.4CuO6+{\delta} (BSLCO) has been studied by aberration corrected transmission electron microscopy in combination with high-dimensional (HD) space description. Two images in the negative Cs imaging (NCSI) and passive Cs imaging (PCSI) modes were deconvoluted, respectively. Similar results as to IMS have been obtained from two corresponding projected potential maps (PPMs), but meanwhile the size of dots representing atoms in the NCSI PPM is found to be smaller than that in PCSI one. Considering that size is one of influencing factors of precision, modulation functions for all unoverlapped atoms in BSLCO were determined based on the PPM obtained from the NCSI image in combination with HD space description

    C-axis lattice dynamics in Bi-based cuprate superconductors

    Full text link
    We present results of a systematic study of the c axis lattice dynamics in single layer Bi2Sr2CuO6 (Bi2201), bilayer Bi2Sr2CaCu2O8 (Bi2212) and trilayer Bi2Sr2Ca2Cu3O10 (Bi2223) cuprate superconductors. Our study is based on both experimental data obtained by spectral ellipsometry on single crystals and theoretical calculations. The calculations are carried out within the framework of a classical shell model, which includes long-range Coulomb interactions and short-range interactions of the Buckingham form in a system of polarizable ions. Using the same set of the shell model parameters for Bi2201, Bi2212 and Bi2223, we calculate the frequencies of the Brillouin-zone center phonon modes of A2u symmetry and suggest the phonon mode eigenvector patterns. We achieve good agreement between the calculated A2u eigenfrequencies and the experimental values of the c axis TO phonon frequencies which allows us to make a reliable phonon mode assignment for all three Bi-based cuprate superconductors. We also present the results of our shell model calculations for the Gamma-point A1g symmetry modes in Bi2201, Bi2212 and Bi2223 and suggest an assignment that is based on the published experimental Raman spectra. The superconductivity-induced phonon anomalies recently observed in the c axis infrared and resonant Raman scattering spectra in trilayer Bi2223 are consistently explained with the suggested assignment.Comment: 29 pages, 13 figure

    Non-centrosymmetric Na3Nb4As3O19

    Get PDF
    A new non-centrosymmetric compound, tris­odium tetra­niobium triarsenic nona­deca­oxide, Na3Nb4As3O19, has been synthesized by a solid-state reaction at 1123 K. The structure consists of AsO4 tetra­hedra and NbO6 octa­hedra sharing corners to form a three-dimensional framework containing two types of tunnels running along the c axis, in which the sodium ions are located. Na+ cations occupying statistically several sites, respectively, are surrounded by seven, six and four O atoms at distances ranging from 2.08 (1) to 2.88 (4) Å. The title structure is compared with those containing the same groups, viz. M 2XO13 and M 2 X 2O17 (M = transition metal, and X = As or P)

    Correlated local distortions of the TlO layers in Tl2_2Ba2_2CuOy_{y}: An x-ray absorption study

    Full text link
    We have used the XAFS (x-ray-absorption fine structure) technique to investigate the local structure about the Cu, Ba, and Tl atoms in orthorhombic Tl-2201 with a superconducting transition temperature Tc_c=60 K. Our results clearly show that the O(1), O(2), Cu, and Ba atoms are at their ideal sites as given by the diffraction measurements, while the Tl and O(3) atoms are more disordered than suggested by the average crystal structure. The Tl-Tl distance at 3.5 \AA{ } between the TlO layers does not change, but the Tl-Tl distance at 3.9 \AA{ } within the TlO layer is not observed and the Tl-Ba and Ba-Tl peaks are very broad. The shorter Tl-O(3) distance in the TlO layer is about 2.33 \AA, significantly shorter than the distance calculated with both the Tl and O(3) atoms at their ideal 4e4e sites ( x=y=x=y=0 or 12\frac{1}{2}). A model based on these results shows that the Tl atom is displaced along the directions from its ideal site by about 0.11 \AA; the displacements of neighboring Tl atoms are correlated. The O(3) atom is shifted from the $4e$ site by about 0.53 \AA{ } roughly along the directions. A comparison of the Tl LIII_{III}-edge XAFS spectra from three samples, with Tc_c=60 K, 76 K, and 89 K, shows that the O environment around the Tl atom is sensitive to Tc_c while the Tl local displacement is insensitive to Tc_c and the structural symmetry. These conclusions are compared with other experimental results and the implications for charge transfer and superconductivity are discussed. This paper has been submitted to Phys. Rev. B.Comment: 20 pages plus 14 ps figures, REVTEX 3.
    corecore