111 research outputs found

    The ALMA REBELS Survey: The Cosmic H i Gas Mass Density in Galaxies at z ≈ 7

    Get PDF
    The neutral atomic gas content of individual galaxies at large cosmological distances has until recently been difficult to measure due to the weakness of the hyperfine H i 21 cm transition. Here we estimate the H i gas mass of a sample of main-sequence star-forming galaxies at z ∼ 6.5-7.8 surveyed for [C ii] 158 μm emission as part of the Reionization Era Bright Emission Line Survey (REBELS), using a recent calibration of the [C ii]-to-H i conversion factor. We find that the H i gas mass excess in galaxies increases as a function of redshift, with an average of M Hi /M ⋆ ≈ 10, corresponding to H i gas mass fractions of f Hi = M Hi /(M ⋆ + M Hi ) = 90%, at z ≈ 7. Based on the [C ii] 158 μm luminosity function (LF) derived from the same sample of galaxies, we further place constraints on the cosmic H i gas mass density in galaxies (ρ Hi ) at this redshift, which we measure to be ρ H I = 7.1 − 3.0 + 6.4 × 10 6 M ⊙ Mpc − 3 . This estimate is substantially lower by a factor of ≈10 than that inferred from an extrapolation of damped Lyα absorber (DLA) measurements and largely depends on the exact [C ii] LF adopted. However, we find this decrease in ρ Hi to be consistent with recent simulations and argue that this apparent discrepancy is likely a consequence of the DLA sight lines predominantly probing the substantial fraction of H i gas in high-z galactic halos, whereas [C ii] traces the H i in the ISM associated with star formation. We make predictions for this buildup of neutral gas in galaxies as a function of redshift, showing that at z ≳ 5, only ≈10% of the cosmic H i gas content is confined in galaxies and associated with the star-forming ISM

    Lysogeny with Shiga Toxin 2-Encoding Bacteriophages Represses Type III Secretion in Enterohemorrhagic Escherichia coli

    Get PDF
    Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins

    Experimental infection in calves with a specific subtype of verocytotoxin-producing Escherichia coli O157:H7 of bovine origin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Sweden, a particular subtype of verocytotoxin-producing <it>Escherichia coli </it>(VTEC) O157:H7, originally defined as being of phage type 4, and carrying two <it>vtx</it><sub>2 </sub>genes, has been found to cause the majority of reported human infections during the past 15 years, including both sporadic cases and outbreaks. One plausible explanation for this could be that this particular subtype is better adapted to colonise cattle, and thereby may be excreted in greater concentrations and for longer periods than other VTEC O157:H7 subtypes.</p> <p>Methods</p> <p>In an experimental study, 4 calves were inoculated with 10<sup>9 </sup>colony forming units (cfu) of strain CCUG 53931, representative of the subtype VTEC O157:H7 (PT4;<it>vtx</it><sub>2</sub>;<it>vtx</it><sub>2c</sub>). Two un-inoculated calves were co-housed with the inoculated calves. Initially, the VTEC O157:H7 strain had been isolated from a dairy herd with naturally occurring infection and the farm had previously also been linked to human infection with the same strain. Faecal samples were collected over up to a 2-month period and analysed for VTEC O157 by immuno-magnetic separation (IMS), and IMS positive samples were further analysed by direct plating to elucidate the shedding pattern. Samples were also collected from the pharynx.</p> <p>Results</p> <p>All inoculated calves proved culture-positive in faeces within 24 hours after inoculation and the un-inoculated calves similarly on days 1 and 3 post-inoculation. One calf was persistently culture-positive for 43 days; in the remainder, the VTEC O157:H7 count in faeces decreased over the first 2 weeks. All pharyngeal samples were culture-negative for VTEC O157:H7.</p> <p>Conclusion</p> <p>This study contributes with information concerning the dynamics of a specific subtype of VTEC O157:H7 colonisation in dairy calves. This subtype, VTEC O157:H7 (PT4;<it>vtx</it><sub>2;</sub><it>vtx</it><sub>2c</sub>), is frequently isolated from Swedish cattle and has also been found to cause the majority of reported human infections in Sweden during the past 15 years. In most calves, inoculated with a representative strain of this specific subtype, the numbers of shed bacteria declined over the first two weeks. One calf could possibly be classified as a high-shedder, excreting high levels of the bacterium for a prolonged period.</p

    Families’ roles in children’s literacy in the UK throughout the 20th century

    Get PDF
    This paper explores the changing roles of families in children’s developing literacy in the UK in the last century. It discusses how, during this time, understandings of reading and writing have evolved into the more nuanced notion of literacy. Further, in acknowledging changes in written communication practices, and shifting attitudes to reading and writ- ing, the paper sketches out how families have always played some part in the literacy of younger generations; though reading was frequently integral to the lives of many families throughout the past century, we consider in particular the more recent enhancement of children’s literacy through targeted family programmes. The paper considers policy implications for promoting young children’s literacy through work with families

    Spatially Explicit Analysis of Metal Transfer to Biota: Influence of Soil Contamination and Landscape

    Get PDF
    Concepts and developments for a new field in ecotoxicology, referred to as “landscape ecotoxicology,” were proposed in the 1990s; however, to date, few studies have been developed in this emergent field. In fact, there is a strong interest in developing this area, both for renewing the concepts and tools used in ecotoxicology as well as for responding to practical issues, such as risk assessment. The aim of this study was to investigate the spatial heterogeneity of metal bioaccumulation in animals in order to identify the role of spatially explicit factors, such as landscape as well as total and extractable metal concentrations in soils. Over a smelter-impacted area, we studied the accumulation of trace metals (TMs: Cd, Pb and Zn) in invertebrates (the grove snail Cepaea sp and the glass snail Oxychilus draparnaudi) and vertebrates (the bank vole Myodes glareolus and the greater white-toothed shrew Crocidura russula). Total and CaCl2-extractable concentrations of TMs were measured in soils from woody patches where the animals were captured. TM concentrations in animals exhibited a high spatial heterogeneity. They increased with soil pollution and were better explained by total rather than CaCl2-extractable TM concentrations, except in Cepaea sp. TM levels in animals and their variations along the pollution gradient were modulated by the landscape, and this influence was species and metal specific. Median soil metal concentrations (predicted by universal kriging) were calculated in buffers of increasing size and were related to bioaccumulation. The spatial scale at which TM concentrations in animals and soils showed the strongest correlations varied between metals, species and landscapes. The potential underlying mechanisms of landscape influence (community functioning, behaviour, etc.) are discussed. Present results highlight the need for the further development of landscape ecotoxicology and multi-scale approaches, which would enhance our understanding of pollutant transfer and effects in ecosystems

    The ALMA REBELS Survey: discovery of a massive, highly star-forming, and morphologically complex ULIRG at z = 7.31

    Get PDF
    We present Atacama Large Millimeter/Submillimeter Array (ALMA) [C ii] and ∼158 continuum observations of REBELS-25, a massive, morphologically complex ultra-luminous infrared galaxy (ULIRG; LIR = L⊙) at z = 7.31, spectroscopically confirmed by the Reionization Era Bright Emission Line Survey (REBELS) ALMA Large Programme. REBELS-25 has a significant stellar mass of. From dust-continuum and ultraviolet observations, we determine a total obscured + unobscured star formation rate of SFR. This is about four times the SFR estimated from an extrapolated main sequence. We also infer a [C ii]-based molecular gas mass of, implying a molecular gas depletion time of Gyr. We observe a [C ii] velocity gradient consistent with disc rotation, but given the current resolution we cannot rule out a more complex velocity structure such as a merger. The spectrum exhibits excess [C ii] emission at large positive velocities (∼500 km s-1), which we interpret as either a merging companion or an outflow. In the outflow scenario, we derive a lower limit of the mass outflow rate of 200, which is consistent with expectations for a star-formation-driven outflow. Given its large stellar mass, SFR, and molecular gas reservoir ∼700 Myr after the big bang, we explore the future evolution of REBELS-25. Considering a simple, conservative model assuming an exponentially declining star formation history, constant star formation efficiency, and no additional gas inflow, we find that REBELS-25 has the potential to evolve into a galaxy consistent with the properties of high-mass quiescent galaxies recently observed at z ∼4

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    The ALMA REBELS Survey: Average [C ii] 158 μm Sizes of Star-forming Galaxies from z ∼ 7 to z ∼ 4

    Get PDF
    We present the average [C ii] 158 μm emission line sizes of UV-bright star-forming galaxies at z ∼ 7. Our results are derived from a stacking analysis of [C ii] 158 μm emission lines and dust continua observed by the Atacama Large Millimeter/submillimeter Array (ALMA), taking advantage of the large program Reionization Era Bright Emission Line Survey. We find that the average [C ii] emission at z ∼ 7 has an effective radius re of 2.2 ± 0.2 kpc. It is ≳2× larger than the dust continuum and the rest-frame UV emission, in agreement with recently reported measurements for z ≲ 6 galaxies. Additionally, we compared the average [C ii] size with 4 < z < 6 galaxies observed by the ALMA Large Program to INvestigate [C ii] at Early times (ALPINE). By analyzing [C ii] sizes of 4 < z < 6 galaxies in two redshift bins, we find an average [C ii] size of re = 2.2 ± 0.2 kpc and re = 2.5 ± 0.2 kpc for z ∼ 5.5 and z ∼ 4.5 galaxies, respectively. These measurements show that star-forming galaxies, on average, show no evolution in the size of the [C ii] 158 μm emitting regions at redshift between z ∼ 7 and z ∼ 4. This finding suggests that the star-forming galaxies could be morphologically dominated by gas over a wide redshift range
    corecore