503 research outputs found

    Diels–Alder cycloaddition and RAFT chain end functionality::an elegant route to fullerene end-capped polymers with control over molecular mass and architecture

    Get PDF
    Fullerene C60 functionalised polymers (FFPs) have found numerous applications from photovoltaic devices to materials for photodynamic therapy. Polymer end-capping is one way to fabricate FFPs since it provides enhanced control over the macromolecular architecture and composition. This paper reports, for the first time, a facile, metal catalyst-free approach to FFPs where polymers, generated by reversible-addition fragmentation chain transfer (RAFT) polymerisation, were coupled to a fullerene derivative through chain-end functionality, provided by the chain transfer agent without further modification. Two routes to a fullerene derivative were compared – based on the Prato reaction and Diels–Alder cycloaddition. The Diels–Alder route exclusively yielded the mono-addition product, whereas the Prato route resulted in a mixture of mono- and diadducts which required further separation. This elegant combination of well-defined RAFT polymerisation and precise Diels–Alder addition allowed one to obtain fullerene end-capped polymers within a wide range of molecular masses (from 5000 to 50 000 g mol−1)

    Tuneable denture adhesives using biomimetic principles for enhanced tissue adhesion in moist environments

    Get PDF
    Nature provides many interesting examples of adhesive strategies. Of particular note, the protein glue secreted by marine mussels delivers high adhesion in wet and dynamic environments owing to existence of catechol moieties. As such, this study focuses on denture fixatives, where a non-zinc-containing commercial-based formulation has been judiciously modified by a biomimetic catechol-inspired polymer, poly(3,4-dihydroxystyrene/styrene-alt-maleic acid) in a quest to modulate adhesive performance. In vitro studies, in a lap-shear configuration, revealed that the catechol-modified components were able to enhance adhesion to both the denture base and hydrated, functional oral tissue mimic, with the resulting mode of failure prominently being adhesive rather than cohesive. These characteristics are desirable in prosthodontic fixative applications, for which temporary adhesion must be maintained, with ultimately an adhesive failure from the mucosal tissue surface preferred. These insights provide an experimental platform in the design of future biomimetic adhesive systems. Statement of Significance: Mussel adhesive proteins have proven to be promising biomimetic adhesive candidates for soft tissues and here for the first time we have adapted marine adhesive technology into a denture fixative application. Importantly, we have incorporated a soft tissue mimic in our in vitro adhesion technique that more closely resembles the oral mucosa than previously studied substrates. The novel biomimetic-modified adhesives showed the ability to score the highest adhesive bonding out of all the formulations included in this study, across all moisture levels.This paper will be of major interest to the Acta Biomaterialia readership since the study has illustrated the potential of biomimetic principles in the design of effective prosthodontic tissue adhesives in a series of purpose-designed in vitro experiments in the context of the challenging features of the oral environment

    Hydrogen bonding in acrylamide and its role in the scattering behavior of acrylamide-based block copolymers

    Get PDF
    Hydrogen bonding plays a role in the microphase separation behavior of many block copolymers, such as those used in lithography, where the stronger interactions due to H-bonding can lead to a smaller period for the self-assembled structures, allowing the production of higher resolution templates. However, current statistical thermodynamic models used in descriptions of microphase separation, such as the Flory-Huggins approach, do not take into account some important properties of hydrogen bonding, such as site specificity and cooperativity. In this combined theoretical and experimental study, a step is taken toward the development of a more complete theory of hydrogen bonding in polymers, using polyacrylamide as a model system. We begin by developing a set of association models to describe hydrogen bonding in amides. Both models with one association constant and two association constants are considered. This theory is used to fit IR spectroscopy data from acrylamide solutions in chloroform, thereby determining the model parameters. These parameters are then employed to calculate the scattering function of the disordered state of a diblock copolymer with one polyacrylamide block and one non-hydrogen-bonding block in the random phase approximation. It is then shown that the expression for the inverse scattering function with hydrogen bonding is the same as that without hydrogen bonding, but with the Flory-Huggins parameter χ replaced by an effective value χeff=χ+δχHB(f), where the hydrogen-bonding contribution δχHB depends on the volume fraction f of the hydrogen-bonding block. We find that models with two constants give better predictions of bond energy in the acrylamide dimer and more realistic asymptotic behavior of the association constants and δχHB in the limit of high temperatures

    Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment

    Get PDF
    Hydrogen bonding plays a role in the microphase separation behavior of many block copolymers, such as those used in lithography, where the stronger interactions due to hydrogen bonding can lead to a smaller period for the self-assembled structures, allowing the production of higher resolution templates. However, current statistical thermodynamic models used in descriptions of microphase separation, such as the Flory–Huggins approach, do not take into account some important properties of hydrogen bonding, such as site specificity and cooperativity. In this combined theoretical and experimental study, a step is taken toward the development of a more complete theory of hydrogen bonding in polymers, using polyacrylamide as a model system. We begin by developing a set of association models to describe hydrogen bonding in amides. Both models with one association constant and two association constants are considered. This theory is used to fit IR spectroscopy data from acrylamide solutions in chloroform, thereby determining the model parameters. We find that models with two constants give better predictions of bond energy in the acrylamide dimer and more realistic asymptotic behavior of the association constants in the limit of high temperatures. At the end of the paper, we briefly discuss the question of the determination of the Flory–Huggins parameter for a diblock copolymer with one self-associating hydrogen bonding block and one non-hydrogen bonding block by means of fitting the scattering function in a disordered state

    Preparation of a poly(L-lactide-co-caprolactone) copolymer using a novel tin(II) alkoxide initiator and its fiber processing for potential use as an absorbable monofilament surgical suture

    Get PDF
    A poly(L-lactide-co-caprolactone) copolymer, P(LL-co-CL), of composition 75:25 mol% was synthesized via the bulk ring-opening copolymerization of L-lactide and ε-caprolactone using a novel bis[tin(II) monooctoate] diethylene glycol coordination-insertion initiator, OctSn-OCH2CH2OCH2CH2O-SnOct. The P(LL-co-CL) copolymer obtained was characterized by a combination of analytical techniques, namely nuclear magnetic resonance spectroscopy, gel permeation chromatography, dilute-solution viscometry, differential scanning calorimetry, and thermogravimetric analysis. For processing into a monofilament fiber, the copolymer was melt spun with minimal draw to give a largely amorphous and unoriented as-spun fiber. The fiber's oriented semicrystalline morphology, necessary to give the required balance of mechanical properties, was then developed via a sequence of controlled offline hot-drawing and annealing steps. Depending on the final draw ratio, the fibers obtained had tensile strengths in the region of 200–400 MPa

    Biodegradable compatibilized poly(L-lactide)/thermoplastic polyurethane blends:design, preparation and property testing

    Get PDF
    Biodegradable blends of poly(l-lactide) (PLL) toughened with a polycaprolactone-based thermoplastic polyurethane (TPU) elastomer and compatibilized with a purpose-designed poly(l-lactide-co-caprolactone) (PLLCL) copolymer were prepared. Both 2-component (PLL/TPU) and 3-component (PLL/TPU/PLLCL) blends of various compositions were prepared by melt mixing, hot-pressed into thin films and their properties tested. The results showed that, although the TPU could toughen the PLL, the blends were immiscible leading to phase separation with the TPU domains distributed in the PLL matrix. However, addition of the PLLCL copolymer could partially compatibilize the blend by improving the interfacial adhesion between the two phases. Biodegradability testing showed that the blends were biodegradable and that the PLLCL copolymer could increase the rate of biodegradation under controlled composting conditions. The 3-component blend of composition PLL/TPU/PLLCL = 90/10/10 parts by weight was found to exhibit the best all-round properties

    Preparation and property testing of compatibilized poly(l-lactide)/thermoplastic polyurethane blends

    Get PDF
    Poly(l-lactide) (PLL) has been blended with a polycaprolactone-based thermoplastic polyurethane (TPU) elastomer as a toughening agent and a poly(l-lactide-co-caprolactone) (PLLCL) copolymer as a compatibilizer. Both 2-component (PLL/TPU) and 3-component (PLL/TPU/PLLCL) blends were prepared by melt mixing, characterized, hot-pressed into thin sheets and their tensile properties tested. The results showed that, although the TPU could toughen the PLL, the blends were largely immiscible leading to phase separation. However, addition of the PLLCL copolymer improved blend compatibility. The best all-round properties were found for the 3-component blend of composition PLL/TPU/PLLCL = 90/10/10 parts by weight

    Self-assembly-driven electrospinning:the transition from fibers to intact beaded morphologies

    Get PDF
    Polymer beads have attracted considerable interest for use in catalysis, drug delivery, and photo­nics due to their particular shape and surface morphology. Electrospinning, typically used for producing nanofibers, can also be used to fabricate polymer beads if the solution has a sufficiently low concentration. In this work, a novel approach for producing more uniform, intact beads is presented by electrospinning self-assembled block copolymer (BCP) solutions. This approach allows a relatively high polymer concentration to be used, yet with a low degree of entanglement between polymer chains due to microphase separation of the BCP in a selective solvent system. Herein, to demonstrate the technology, a well-studied polystyrene-poly(ethylene butylene)–polystyrene triblock copolymer is dissolved in a co-solvent system. The effect of solvent composition on the characteristics of the fibers and beads is intensively studied, and the mechanism of this fiber-to-bead is found to be dependent on microphase separation of the BCP

    Interaction and engagement with an anxiety management app: Analysis using large-Scale behavioral data

    Get PDF
    © Paul Matthews, Phil Topham, Praminda Caleb-Solly. Background: SAM (Self-help for Anxiety Management) is a mobile phone app that provides self-help for anxiety management. Launched in 2013, the app has achieved over one million downloads on the iOS and Android platform app stores. Key features of the app are anxiety monitoring, self-help techniques, and social support via a mobile forum (“the Social Cloud”). This paper presents unique insights into eMental health app usage patterns and explores user behaviors and usage of self-help techniques. Objective: The objective of our study was to investigate behavioral engagement and to establish discernible usage patterns of the app linked to the features of anxiety monitoring, ratings of self-help techniques, and social participation. Methods: We use data mining techniques on aggregate data obtained from 105,380 registered users of the app’s cloud services. Results: Engagement generally conformed to common mobile participation patterns with an inverted pyramid or “funnel” of engagement of increasing intensity. We further identified 4 distinct groups of behavioral engagement differentiated by levels of activity in anxiety monitoring and social feature usage. Anxiety levels among all monitoring users were markedly reduced in the first few days of usage with some bounce back effect thereafter. A small group of users demonstrated long-term anxiety reduction (using a robust measure), typically monitored for 12-110 days, with 10-30 discrete updates and showed low levels of social participation. Conclusions: The data supported our expectation of different usage patterns, given flexible user journeys, and varying commitment in an unstructured mobile phone usage setting. We nevertheless show an aggregate trend of reduction in self-reported anxiety across all minimally-engaged users, while noting that due to the anonymized dataset, we did not have information on users also enrolled in therapy or other intervention while using the app. We find several commonalities between these app-based behavioral patterns and traditional therapy engagement

    In Situ Small-Angle X-ray Scattering Studies During Reversible Addition–Fragmentation Chain Transfer Aqueous Emulsion Polymerization

    Get PDF
    Polymerization-induced self-assembly (PISA) is a powerful platform technology for the rational and efficient synthesis of a wide range of block copolymer nano-objects (e.g., spheres, worms or vesicles) in various media. In situ small-angle X-ray scattering (SAXS) studies of reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization have previously provided detailed structural information during self-assembly (see M. J. Derry et al., Chem. Sci. 2016, 7, 5078–5090). However, conducting the analogous in situ SAXS studies during RAFT aqueous emulsion polymerizations poses a formidable technical challenge because the inherently heterogeneous nature of such PISA formulations requires efficient stirring to generate sufficiently small monomer droplets. In the present study, the RAFT aqueous emulsion polymerization of 2-methoxyethyl methacrylate (MOEMA) has been explored for the first time. Chain extension of a relatively short non-ionic poly(glycerol monomethacrylate) (PGMA) precursor block leads to the formation of sterically-stabilized PGMA-PMOEMA spheres, worms or vesicles, depending on the precise reaction conditions. Construction of a suitable phase diagram enables each of these three morphologies to be reproducibly targeted at copolymer concentrations ranging from 10 to 30% w/w solids. High MOEMA conversions are achieved within 2 h at 70 °C, which makes this new PISA formulation well-suited for in situ SAXS studies using a new reaction cell. This bespoke cell enables efficient stirring and hence allows in situ monitoring during RAFT emulsion polymerization for the first time. For example, the onset of micellization and subsequent evolution in particle size can be studied when preparing PGMA29-PMOEMA30 spheres at 10% w/w solids. When targeting PGMA29-PMOEMA70 vesicles under the same conditions, both the micellar nucleation event and the subsequent evolution in the diblock copolymer morphology from spheres to worms to vesicles are observed. These new insights significantly enhance our understanding of the PISA mechanism during RAFT aqueous emulsion polymerization
    • …
    corecore