9 research outputs found

    Research trends in cholangiocarcinoma treatments during the last 3 decades

    No full text
    Background: Over the past 30 years, numerous studies have focused on the treatment of cholangiocarcinoma (CCA), and these treatments have greatly evolved. Objectives: To better understand the research trends, we evaluated the most influential publications and attempted to identify their characteristics using bibliometric methods. Methods: The most influential publications were identified from the Clarivate Analytics Web of Science Core Collection database. The general characteristics of included papers were identified, and the research trends were explored via the bibliometric method. Results: The average total number of citations for of the listed publications were 312 (range from 165 to 1922). The highest number of papers were published during period II (2001–2010, n = 50), followed by period III (2011–2020, n = 28), and period I (1991–2000, n = 22). The United States and Germany have made remarkable achievements in this field. Institutionally, Mayo Clinic and Memorial Sloan-Kettering Cancer Center were the leading institutions, with Blumgart and Zhu from the United States being the most influential authors. Close collaboration was established between the leading countries, institutions, and authors. The Annals of Surgery contributed the most to the papers with the highest total number of citations. Surgery predominated during period I (n = 14, 63.6%), with a gradual decline occurring during periods II (n = 19, 41.3%, P = 0.085) and period III (n = 3, 9.4%, P = 0.002). Contrastingly, the number of publications related to systemic therapy has increased significantly since period II and peaked in period III. Conclusions: Surgery remains the most important treatment for CCA. However systemic therapy has become a research and clinical application hotspot. These findings will contribute to the translation of treatments for CCA and provide researchers with relevant research directions

    Inhibition of AMPK/PFKFB3 mediated glycolysis synergizes with penfluridol to suppress gallbladder cancer growth

    No full text
    Abstract Background Penfluridol (PF) is an FDA-approved antipsychotic drug that has recently been shown to have anticancer activity. However, the anticancer effects and underlying mechanisms of PF are not well-established in gallbladder cancer (GBC). Methods The anticancer efficacy of PF on GBC was investigated via a series of cell functions experiments, including cell viability, colony formation, apoptosis assays, and so on. The corresponding signaling changes after PF treatment were explored by western blotting. Then, nude mice were utilized to study and test the anticancer activity of PF in vivo. Besides, glucose consumption and lactic production assays were used to detect the glycolysis alteration. Results In this study, we discovered that PF greatly inhibited the proliferation and invasion ability of GBC cells (GBCs). The glucose consumption and lactic generation ability of GBCs were dramatically elevated following PF treatment. Additionally, we discovered that inhibiting glycolysis could improve PF's anticancer efficacy. Further studies established that the activation of the AMPK/PFKFB3 signaling pathway medicated glycolysis after PF treatment. We proved mechanistically that inhibition of AMPK/PFKFB3 singling pathway mediated glycolysis was a potential synergetic strategy to improve the anticancer efficacy of PF on GBC. Conclusions By inhibiting AMPK, the anticancer effects of PF on GBCs were amplified. As a result, our investigations shed new light on the possibility of repurposing PF as an anticancer drug for GBC, and AMPK inhibition in combination with PF may represent a novel therapeutic strategy for GBC. Graphical abstract Video abstrac

    Estimating the influencing factors for T1b/T2 gallbladder cancer on survival and surgical approaches selection

    No full text
    Abstract Background The influencing factors, especially time to treatment (TTT), for T1b/T2 gallbladder cancer (GBC) patients remain unknown. We aimed to identify the influencing factors on survival and surgical approaches selection for T1b/T2 GBC. Methods We retrospectively screened GBC patients between January 2011 and August 2018 from our hospital. Clinical variables, including patient characteristics, TTT, overall survival (OS), disease‐free survival (DFS), surgery‐related outcomes, and surgical approaches were collected. Results A total of 114 T1b/T2 GBC patients who underwent radical resection were included. Based on the median TTT of 7.5 days, the study cohort was divided into short TTT group (TTT ≤7 days, n = 57) and long TTT group (TTT >7 days, n = 57). Referrals were identified as the primary factor prolonging TTT (p  0.05) between both groups. Decreased referrals (p = 0.005), fewer positive lymph nodes (LNs; p = 0.004), and well tumor differentiation (p = 0.004) were all associated with better OS, while fewer positive LNs (p = 0.049) were associated with better DFS. Subgroup analyses revealed no significant difference in survival between patients undergoing laparoscopic or open approach in different TTT groups (all p > 0.05). And secondary subgroup analyses found no significance in survival and surgery‐related outcomes between different TTT groups of incidental GBC patients (all p > 0.05). Conclusions Positive LNs and tumor differentiation were prognostic factors for T1b/T2 GBC survival. Referrals associating with poor OS would delay TTT, while the prolonged TTT would not impact survival, surgery‐related outcomes, and surgical approaches decisions in T1b/T2 GBC patients

    Lipid metabolism in tumor-infiltrating regulatory T cells: perspective to precision immunotherapy

    No full text
    Abstract Regulatory T cells (Tregs) are essential to the negative regulation of the immune system, as they avoid excessive inflammation and mediate tumor development. The abundance of Tregs in tumor tissues suggests that Tregs may be eliminated or functionally inhibited to stimulate antitumor immunity. However, immunotherapy targeting Tregs has been severely hampered by autoimmune diseases due to the systemic elimination of Tregs. Recently, emerging studies have shown that metabolic regulation can specifically target tumor-infiltrating immune cells, and lipid accumulation in TME is associated with immunosuppression. Nevertheless, how Tregs actively regulate metabolic reprogramming to outcompete effector T cells (Teffs), and how lipid metabolic reprogramming contributes to the immunomodulatory capacity of Tregs have not been fully discussed. This review will discuss the physiological processes by which lipid accumulation confers a metabolic advantage to tumor-infiltrating Tregs (TI-Tregs) and amplifies their immunosuppressive functions. Furthermore, we will provide a summary of the driving effects of various metabolic regulators on the metabolic reprogramming of Tregs. Finally, we propose that targeting the lipid metabolism of TI-Tregs could be efficacious either alone or in conjunction with immune checkpoint therapy

    Bortezomib-encapsulated dual responsive copolymeric nanoparticles for gallbladder cancer targeted therapy

    No full text
    Gallbladder cancer (GBC) is a rare but the most malignant type of biliary tract tumor. It is usually diagnosed at an advanced stage and conventional treatments are unsatisfactory. As a proteasome inhibitor, bortezomib (BTZ) exhibits excellent antitumor ability in GBC. However, the long-term treatment efficacy is limited by its resistance, poor stability, and high toxicity. Herein, BTZ-encapsulated pH-responsive copolymeric nanoparticles with estrone (ES-NP(BTZ; Ce6) ) for GBC-specific targeted therapy is reported. Due to the high estrogen receptor expression in GBC, ES-NP(BTZ; Ce6) can rapidly enter the cells and accumulate near the nucleus via ES-mediated endocytosis. Under acidic tumor microenvironment (TME) and 808 nm laser irradiation, BTZ is released and ROS is generated by Ce6 to destroy the "bounce-back" response pathway proteins, such as DDI2 and p97, which can effectively inhibit proteasomes and increase apoptosis. Compared to the traditional treatment using BTZ monotherapy, ES-NP(BTZ; Ce6) can significantly impede disease progression at lower BTZ concentrations and improve its resistance. Moreover, ES-NP(BTZ; Ce6) demonstrates similar antitumor abilities in patient-derived xenograft animal models and five other types of solid tumor cells, revealing its potential as a broad-spectrum antitumor formulation.Published versionM.C., S.J., S.L., and W.T. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (NO. 81827804 and 81800540), Zhejiang Provincial Natural Science Foundation of China (NO. LQ22H160003), Zhejiang Clinical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases (NO. 2018E50003), and Key Research and Development Project of Zhejiang Province (NO. 2018C03083)

    Pre-activated nanoparticles with persistent luminescence for deep tumor photodynamic therapy in gallbladder cancer

    No full text
    Abstract Phototherapy of deep tumors still suffers from many obstacles, such as limited near-infrared (NIR) tissue penetration depth and low accumulation efficiency within the target sites. Herein, stimuli-sensitive tumor-targeted photodynamic nanoparticles (STPNs) with persistent luminescence for the treatment of deep tumors are reported. Purpurin 18 (Pu18), a porphyrin derivative, is utilized as a photosensitizer to produce persistent luminescence in STPNs, while lanthanide-doped upconversion nanoparticles (UCNPs) exhibit bioimaging properties and possess high photostability that can enhance photosensitizer efficacy. STPNs are initially stimulated by NIR irradiation before intravenous administration and accumulate at the tumor site to enter the cells through the HER2 receptor. Due to Pu18 afterglow luminescence properties, STPNs can continuously generate ROS to inhibit NFκB nuclear translocation, leading to tumor cell apoptosis. Moreover, STPNs can be used for diagnostic purposes through MRI and intraoperative NIR navigation. STPNs exceptional antitumor properties combined the advantages of UCNPs and persistent luminescence, representing a promising phototherapeutic strategy for deep tumors
    corecore