745 research outputs found
Fluorescent small organic probes for biosensing
Small-molecule based fluorescent probes are increasingly important for the detection and imaging of biological signaling molecules due to their simplicity, high selectivity and sensitivity, whilst being non-invasive, and suitable for real-time analysis of living systems. With this perspective we highlight sensing mechanisms including Förster resonance energy transfer (FRET), intramolecular charge transfer (ICT), photoinduced electron transfer (PeT), excited state intramolecular proton transfer (ESIPT), aggregation induced emission (AIE) and multiple modality fluorescence approaches including dual/triple sensing mechanisms (DSM or TSM). Throughout the perspective we highlight the remaining challenges and suggest potential directions for development towards improved small-molecule fluorescent probes suitable for biosensing
Atypical cortical connectivity and visuospatial cognitive impairments are related in children with chromosome 22q11.2 deletion syndrome
BackgroundChromosome 22q11.2 deletion syndrome is one of the most common genetic causes of cognitive impairment and developmental disability yet little is known about the neural bases of those challenges. Here we expand upon our previous neurocognitive studies by specifically investigating the hypothesis that changes in neural connectivity relate to cognitive impairment in children with the disorder.MethodsWhole brain analyses of multiple measures computed from diffusion tensor image data acquired from the brains of children with the disorder and typically developing controls. We also correlated diffusion tensor data with performance on a visuospatial cognitive task that taps spatial attention.ResultsAnalyses revealed four common clusters, in the parietal and frontal lobes, that showed complementary patterns of connectivity in children with the deletion and typical controls. We interpreted these results as indicating differences in connective complexity to adjoining cortical regions that are critical to the cognitive functions in which affected children show impairments. Strong, and similarly opposing patterns of correlations between diffusion values in those clusters and spatial attention performance measures considerably strengthened that interpretation.ConclusionOur results suggest that atypical development of connective patterns in the brains of children with chromosome 22q11.2 deletion syndrome indicate a neuropathology that is related to the visuospatial cognitive impairments that are commonly found in affected individuals
Thermally Activated Delayed Fluorescence Materials Based on Homoconjugation Effect of Donor–Acceptor Triptycenes
Donor–acceptor triptycences, TPA-QNX(CN)2 and TPA-PRZ(CN)2, were synthesized and their emissive properties were studied. They exhibited a blue-green fluorescence with emission lifetimes on the order of a microsecond in cyclohexane at room temperature. The long lifetime emission is quenched by O[subscript 2] and is attributed to thermally activated delayed florescence (TADF). Unimolecular TADF is made possible by the separation and weak coupling due to homoconjugation of the HOMO and LUMO on different arms of the three-dimensional donor–acceptor triptycene. Organic light emitting devices (OLEDs) were fabricated using TPA-QNX(CN)2 and TPA-PRZ(CN)2 as emitters which displayed electroluminescence with efficiencies as high as 9.4% EQE.Samsung (Firm)Japan Society for the Promotion of Scienc
Comparison of Non-human Primate versus Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Treatment of Myocardial Infarction.
Non-human primates (NHPs) can serve as a human-like model to study cell therapy using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). However, whether the efficacy of NHP and human iPSC-CMs is mechanistically similar remains unknown. To examine this, RNU rats received intramyocardial injection of 1 × 107 NHP or human iPSC-CMs or the same number of respective fibroblasts or PBS control (n = 9-14/group) at 4 days after 60-min coronary artery occlusion-reperfusion. Cardiac function and left ventricular remodeling were similarly improved in both iPSC-CM-treated groups. To mimic the ischemic environment in the infarcted heart, both cultured NHP and human iPSC-CMs underwent 24-hr hypoxia in vitro. Both cells and media were collected, and similarities in transcriptomic as well as metabolomic profiles were noted between both groups. In conclusion, both NHP and human iPSC-CMs confer similar cardioprotection in a rodent myocardial infarction model through relatively similar mechanisms via promotion of cell survival, angiogenesis, and inhibition of hypertrophy and fibrosis
Singlet fission efficiency in tetracene-based organic solar cells
Singlet exciton fission splits one singlet exciton into two triplet excitons. Using a joint analysis of photocurrent and fluorescence modulation under a magnetic field, we determine that the triplet yield within optimized tetracene organic photovoltaic devices is 153% ± 5% for a tetracene film thickness of 20 nm. The corresponding internal quantum efficiency is 127% ± 18%. These results are used to prove the effectiveness of a simplified triplet yield measurement that relies only on the magnetic field modulation of fluorescence. Despite its relatively slow rate of singlet fission, the measured triplet yields confirm that tetracene is presently the best candidate for use with silicon solar cells.United States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-SC0001088)National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374
Defining Well Clear Separation for Unmanned Aircraft Systems Operating with Non-Cooperative Aircraft
Detect-and-Avoid (DAA) systems are essential to the safe operations of Unmanned Aircraft Systems, and have the objectives of mitigating collisions with and remaining Well Clear of manned aircraft. This paper analyzes four candidate DAA Well Clear definitions for non-cooperative aircraft using mitigated performance metrics of DAA systems. These DAA Well Clear definitions were proposed in previous work based on their unmitigated collision risk and maneuver initiation range. In this work they are evaluated using safety and operational suitability metrics computed from a large number of representative encounters. Results suggest that although the four candidate DAA Well Clear definitions provide comparable safety, the alerting characteristics give preference for the DAA Well Clear definition without a temporal parameter
Turbocharged molecular discovery of OLED emitters: from high-throughput quantum simulation to highly efficient TADF devices
Discovering new OLED emitters requires many experiments to synthesize candidates and test performance in devices. Large scale computer simulation can greatly speed this search process but the problem remains challenging enough that brute force application of massive computing power is not enough to successfully identify novel structures. We report a successful High Throughput Virtual Screening study that leveraged a range of methods to optimize the search process. The generation of candidate structures was constrained to contain combinatorial explosion. Simulations were tuned to the specific problem and calibrated with experimental results. Experimentalists and theorists actively collaborated such that experimental feedback was regularly utilized to update and shape the computational search. Supervised machine learning methods prioritized candidate structures prior to quantum chemistry simulation to prevent wasting compute on likely poor performers. With this combination of techniques, each multiplying the strength of the search, this effort managed to navigate an area of molecular space and identify hundreds of promising OLED candidate structures. An experimentally validated selection of this set shows emitters with external quantum efficiencies as high as 22%
Nonthermal nature of incipient extremal black holes
We examine particle production from spherical bodies collapsing into extremal
Reissner-Nordstr\"om black holes. Kruskal coordinates become ill-defined in the
extremal case, but we are able to find a simple generalization of them that is
good in this limit. The extension allows us to calculate the late-time
worldline of the center of the collapsing star, thus establishing a
correspondence with a uniformly accelerated mirror in Minkowski spacetime. The
spectrum of created particles associated with such uniform acceleration is
nonthermal, indicating that a temperature is not defined. Moreover, the
spectrum contains a constant that depends on the history of the collapsing
object. At first sight this points to a violation of the no-hair theorems;
however, the expectation value of the stress-energy-momentum tensor is zero and
its variance vanishes as a power law at late times. Hence, both the no-hair
theorems and the cosmic censorship conjecture are preserved. The power-law
decay of the variance is in distinction to the exponential fall-off of a
nonextremal black hole. Therefore, although the vanishing of the stress
tensor's expectation value is consistent with a thermal state at zero
temperature, the incipient black hole does not behave as a thermal object at
any time and cannot be regarded as the thermodynamic limit of a nonextremal
black hole, regardless of the fact that the final product of collapse is
quiescent.Comment: 13 pages, 2 epsf figures, RevTeX 3. Minor changes, version published
in PR
- …