249 research outputs found

    Supernova Remnants and Star Formation in the Large Magellanic Cloud

    Full text link
    It has often been suggested that supernova remnants (SNRs) can trigger star formation. To investigate the relationship between SNRs and star formation, we have examined the known sample of 45 SNRs in the Large Magellanic Cloud to search for associated young stellar objects (YSOs) and molecular clouds. We find seven SNRs associated with both YSOs and molecular clouds, three SNRs associated with YSOs but not molecular clouds, and eight SNRs near molecular clouds but not associated with YSOs. Among the 10 SNRs associated with YSOs, the association between the YSOs and SNRs can be either rejected or cannot be convincingly established for eight cases. Only two SNRs have YSOs closely aligned along their rims; however, the time elapsed since the SNR began to interact with the YSOs' natal clouds is much shorter than the contraction timescales of the YSOs, and thus we do not see any evidence of SNR-triggered star formation in the LMC. The 15 SNRs that are near molecular clouds may trigger star formation in the future when the SNR shocks have slowed down to <45 km/s. We discuss how SNRs can alter the physical properties and abundances of YSOs.Comment: 24 pages, 5 figures, 1 table, Accepted for publication in the August 2010 edition of the Astronomical Journa

    ALMA Observations of a Quiescent Molecular Cloud in the Large Magellanic Cloud

    Full text link
    We present high-resolution (sub-parsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in 12^{12}CO(2-1) and high column density regions in 13^{13}CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the "Planck cold cloud" or PCC) in the southern outskirts of the galaxy where star-formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and 5 times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface density structures tend to exhibit super-virial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures ("leaves") of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-linewidth relationships.Comment: Accepted by ApJ; 21 pages in AASTeX two-column styl

    The Samurai Project: verifying the consistency of black-hole-binary waveforms for gravitational-wave detection

    Get PDF
    We quantify the consistency of numerical-relativity black-hole-binary waveforms for use in gravitational-wave (GW) searches with current and planned ground-based detectors. We compare previously published results for the (ℓ=2,∣m∣=2)(\ell=2,| m | =2) mode of the gravitational waves from an equal-mass nonspinning binary, calculated by five numerical codes. We focus on the 1000M (about six orbits, or 12 GW cycles) before the peak of the GW amplitude and the subsequent ringdown. We find that the phase and amplitude agree within each code's uncertainty estimates. The mismatch between the (ℓ=2,∣m∣=2)(\ell=2,| m| =2) modes is better than 10−310^{-3} for binary masses above 60M⊙60 M_{\odot} with respect to the Enhanced LIGO detector noise curve, and for masses above 180M⊙180 M_{\odot} with respect to Advanced LIGO, Virgo and Advanced Virgo. Between the waveforms with the best agreement, the mismatch is below 2×10−42 \times 10^{-4}. We find that the waveforms would be indistinguishable in all ground-based detectors (and for the masses we consider) if detected with a signal-to-noise ratio of less than ≈14\approx14, or less than ≈25\approx25 in the best cases.Comment: 17 pages, 9 figures. Version accepted by PR

    Curcumin Downregulates Phosphate Carrier and Protects against Doxorubicin Induced Cardiomyocyte Apoptosis

    Get PDF
    Aim. To explore the effects of curcumin on phosphate carrier (PiC) and its role in protection against doxorubicin induced myocyte toxicity. Methods. Using H9c2 cell line, the cardiotoxic effect of doxorubicin and its mitigation by curcumin were studied. H9c2 cells were cultured with doxorubicin and/or curcumin at various concentrations. Analysis for apoptosis of H9c2 was done using flow cytometry. Confocal laser scanning microscopy was used to record the fluorescence intensity ratios and to determine the mitochondrial permeability transition pore (MPTP) opening state. Oxidative stress was measured using glutathione level, superoxide dismutase activities, and malondialdehyde content. The effect of doxorubicin and curcumin on PiC gene expression was measured by real-time PCR. Results. Curcumin decreased mRNA of PiC and was partly protective against oxidative stress, loss of mitochondrial transmembrane potential, and apoptosis induced by doxorubicin. Interestingly, the effect was not clearly dose dependent and the concentration of 12 mg/L was more efficient than 15 and 10 mg/L. Conclusion. Curcumin downregulates PiC and partly protects against doxorubicin induced oxidative stress and myocyte apoptosis

    The SXS Collaboration catalog of binary black hole simulations

    Get PDF
    Accurate models of gravitational waves from merging black holes are necessary for detectors to observe as many events as possible while extracting the maximum science. Near the time of merger, the gravitational waves from merging black holes can be computed only using numerical relativity. In this paper, we present a major update of the Simulating eXtreme Spacetimes (SXS) Collaboration catalog of numerical simulations for merging black holes. The catalog contains 2018 distinct configurations (a factor of 11 increase compared to the 2013 SXS catalog), including 1426 spin-precessing configurations, with mass ratios between 1 and 10, and spin magnitudes up to 0.998. The median length of a waveform in the catalog is 39 cycles of the dominant ℓ=m=2\ell=m=2 gravitational-wave mode, with the shortest waveform containing 7.0 cycles and the longest 351.3 cycles. We discuss improvements such as correcting for moving centers of mass and extended coverage of the parameter space. We also present a thorough analysis of numerical errors, finding typical truncation errors corresponding to a waveform mismatch of ∼10−4\sim 10^{-4}. The simulations provide remnant masses and spins with uncertainties of 0.03% and 0.1% (90th90^{\text{th}} percentile), about an order of magnitude better than analytical models for remnant properties. The full catalog is publicly available at https://www.black-holes.org/waveforms .Comment: 33+18 pages, 13 figures, 4 tables, 2,018 binaries. Catalog metadata in ancillary JSON file. v2: Matches version accepted by CQG. Catalog available at https://www.black-holes.org/waveform

    Focused Ion Beam Microfabrication

    Get PDF
    Contains an introduction, reports on seven research projects and a list of publications.Defense Advanced Research Projects Agency/U.S. Army Research Office Contract DAAL03-88-K-0108National Science Foundation Grant ECS 89-21728U.S. Army Research Office Contract DAAL03-87-K-0126U.S. Navy - Naval Research Laboratory/Micrion Agreement M08774SEMATEC

    Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    Get PDF
    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ~100-200 solar masses, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios <= 4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    • …
    corecore