641 research outputs found

    Chandra HETGS Multiphase Spectroscopy Of The Young Magnetic O Star Theta(1) Orionis C

    Get PDF
    We report on four Chandra grating observations of the oblique magnetic rotator theta(1) Ori C (O5.5 V), covering a wide range of viewing angles with respect to the star\u27s 1060 G dipole magnetic field. We employ line-width and centroid analyses to study the dynamics of the X-ray - emitting plasma in the circumstellar environment, as well as line-ratio diagnostics to constrain the spatial location, and global spectral modeling to constrain the temperature distribution and abundances of the very hot plasma. We investigate these diagnostics as a function of viewing angle and analyze them in conjunction with new MHD simulations of the magnetically channeled wind shock mechanism on theta(1) Ori C. This model fits all the data surprisingly well, predicting the temperature, luminosity, and occultation of the X-ray - emitting plasma with rotation phase

    The Large Magellanic Cloud: A power spectral analysis of Spitzer images

    Full text link
    We present a power spectral analysis of Spitzer images of the Large Magellanic Cloud. The power spectra of the FIR emission show two different power laws. At larger scales (kpc) the slope is ~ -1.6, while at smaller ones (tens to few hundreds of parsecs) the slope is steeper, with a value ~ -2.9. The break occurs at a scale around 100-200 pc. We interpret this break as the scale height of the dust disk of the LMC. We perform high resolution simulations with and without stellar feedback. Our AMR hydrodynamic simulations of model galaxies using the LMC mass and rotation curve, confirm that they have similar two-component power-laws for projected density and that the break does indeed occur at the disk thickness. Power spectral analysis of velocities betrays a single power law for in-plane components. The vertical component of the velocity shows a flat behavior for large structures and a power law similar to the in-plane velocities at small scales. The motions are highly anisotropic at large scales, with in-plane velocities being much more important than vertical ones. In contrast, at small scales, the motions become more isotropic.Comment: 8 pages, 4 figures, talk presented at "Galaxies and their Masks", celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I. Puerar

    Ram pressure feeding super-massive black holes

    Get PDF
    When supermassive black holes at the center of galaxies accrete matter (usually gas), they give rise to highly energetic phenomena named Active Galactic Nuclei (AGN). A number of physical processes have been proposed to account for the funneling of gas towards the galaxy centers to feed the AGN. There are also several physical processes that can strip gas from a galaxy, and one of them is ram pressure stripping in galaxy clusters due to the hot and dense gas filling the space between galaxies. We report the discovery of a strong connection between severe ram pressure stripping and the presence of AGN activity. Searching in galaxy clusters at low redshift, we have selected the most extreme examples of jellyfish galaxies, which are galaxies with long tentacles of material extending for dozens of kpc beyond the galaxy disk. Using the MUSE spectrograph on the ESO Very Large Telescope, we find that 6 out of the 7 galaxies of this sample host a central AGN, and two of them also have galactic-scale AGN ionization cones. The high incidence of AGN among the most striking jellyfishes may be due to ram pressure causing gas to flow towards the center and triggering the AGN activity, or to an enhancement of the stripping caused by AGN energy injection, or both. Our analysis of the galaxy position and velocity relative to the cluster strongly supports the first hypothesis, and puts forward ram pressure as another, yet unforeseen, possible mechanism for feeding the central supermassive black hole with gas.Comment: published in Nature, Vol.548, Number 7667, pag.30

    Impact of magnetic fields on ram pressure stripping in disk galaxies

    Full text link
    (abridged) Ram pressure can remove significant amounts of gas from galaxies in clusters, and thus has a large impact on the evolution of cluster galaxies. Recent observations have shown that key properties of ram pressure stripped tails of galaxies are in conflict with predictions by simulations. To increase the realism of existing simulations, we simulated for the first time a disk galaxy exposed to a uniformly magnetized wind including radiative cooling and self-gravity of the gas. We find that B-fields have a strong effect on the morphology of the gas in the tail of the galaxy. While in the pure hydro case the tail is very clumpy, the MHD case shows very filamentary structures in the tail. The filaments can be strongly supported by magnetic pressure and, when this is the case, the B-field vectors tend to be aligned with the filaments. The ram pressure stripping may lead to the formation of magnetized density tails that appear as bifurcated in the plane of the sky and resemble the double tails observed in ESO 137-001 and ESO 137-002. Such tails can be formed under a variety of situations, both for the disks oriented face-on with respect to the ICM wind and for the tilted ones. While this bifurcation is due to the generic tendency for the B-fields to produce very filamentary tail morphology, the tail properties are further shaped by the combination of the B-field orientation and the sliding of the field past the disk surface exposed to the wind. Magnetic draping does not strongly change the rate of gas stripping. For a face-on galaxy, the field tends to reduce the amount of stripping compared to the pure hydro case, and is associated with the formation of a magnetic draping layer on the side of the galaxy exposed to the ICM wind. For significantly tilted disks, the stripping rate may be enhanced by the ``scraping'' of the disk surface by the B-fields sliding past the ISM/ICM interface.Comment: ApJ in press. arXiv admin note: text overlap with arXiv:0909.3097 by other author

    X-Ray Emission Line Profile Modeling Of Hot Stars

    Get PDF
    The launch of high-spectral-resolution x-ray telescopes (Chandra, XMM) has provided a host of new spectralline diagnostics for the astrophysics community. In this paper we discuss Doppler-broadened emission line profiles from highly supersonic outflows of massive stars. These outflows, or winds, are driven by radiation pressure and carry a tremendous amount of kinetic energy, which can be converted to x rays by shock-heating even a small fraction of the wind plasma. The unshocked, cold wind is a source of continuum opacity to the x rays generated in the shock-heated portion of the wind. Thus the emergent line profiles are affected by transport through a two-component, moving, optically thick medium. While complicated, the interactions among these physical effects can provide quantitative information about the spatial distribution and velocity of the x-ray-emitting and absorbing plasma in stellar winds. We present quantitative models of both a spherically symmetric wind and a wind with hot plasma confined in an equatorial disk by a dipole magnetic field

    The low redshift Lyman-α\alpha Forest as a constraint for models of AGN feedback

    Full text link
    We study the low redshift Lyman-α\alpha Forest in the Illustris and IllustrisTNG (TNG) cosmological simulations to demonstrate their utility in constraining aspects of sub-grid models of feedback from active galactic nuclei (AGN). The two simulations share an identical Ultraviolet Background prescription and similar cosmological parameters, but TNG features an entirely reworked AGN feedback model. Therefore a comparison of these simulations is useful to assess the effects of an altered AGN sub-grid model on the low redshift Lyman-α\alpha Forest. We find significant differences in the IGM temperature-density relation between the two simulations due to changes in the gas heating rate due to AGN. We investigate Lyman-α\alpha Forest observables such as the column density distribution function, flux PDF, and Doppler width (bb-parameter) distribution. Due to the AGN radio mode model, the original Illustris simulations have a factor of 2-3 fewer absorbers than TNG at column densities NHI<1015.5N_{\rm HI}< 10^{15.5} cm2^{-2}. We show that TNG is in much better agreement with the observed z=0.1z=0.1 flux power spectrum than Illustris. The differences in the amplitude and shape of the flux PDF and power spectrum between Illustris and TNG cannot be attributed to simple changes in the photoheating rate. We also compare the simulated Forest statistics to UV data from the Cosmic Origins Spectrograph (COS) and find that neither simulation can reproduce the slope of the absorber distribution. Both Illustris and TNG also produce significantly smaller bb-parameter distributions than observed in the COS data, possibly due to unresolved or missing sources of turbulence.Comment: Submitted to ApJL, comments welcom

    Nicotine inhaler for smoking cessation [4]

    Get PDF
    To the Editor. In a recent article, Tonnesen et al suggest that a nicotine inhaler in smoking cessation could be implemented in general practitioner offices with high success rates and that it would be "acceptable" to patients. In addition, the program is described as "low intervention." Results from their study do not support such statements

    Chandra HETGS Multi-Phase Spectroscopy of the Young Magnetic O Star theta^1 Orionis C

    Full text link
    We report on four Chandra grating observations of the oblique magnetic rotator theta^1 Ori C (O5.5 V) covering a wide range of viewing angles with respect to the star's 1060 G dipole magnetic field. We employ line-width and centroid analyses to study the dynamics of the X-ray emitting plasma in the circumstellar environment, as well as line-ratio diagnostics to constrain the spatial location, and global spectral modeling to constrain the temperature distribution and abundances of the very hot plasma. We investigate these diagnostics as a function of viewing angle and analyze them in conjunction with new MHD simulations of the magnetically channeled wind shock mechanism on theta^1 Ori C. This model fits all the data surprisingly well, predicting the temperature, luminosity, and occultation of the X-ray emitting plasma with rotation phase.Comment: 52 pages, 14 figures (1 color), 6 tables. To appear in the Astrophysical Journal, 1 August 2005, v628, issue 2. New version corrects e-mail address, figure and table formatting problem

    GASP XXX. The spatially resolved SFR-Mass relation in stripping galaxies in the local universe

    Get PDF
    The study of the spatially resolved Star Formation Rate-Mass (Sigma_SFR-Sigma_M) relation gives important insights on how galaxies assemble at different spatial scales. Here we present the analysis of the Sigma_SFR-Sigma_M of 40 local cluster galaxies undergoing ram pressure stripping drawn from the GAs Stripping Phenomena in galaxies (GASP) sample. Considering their integrated properties, these galaxies show a SFR enhancement with respect to undisturbed galaxies of similar stellar mass; we now exploit spatially resolved data to investigate the origin and location of the excess. Even on ~1kpc scales, stripping galaxies present a systematic enhancement of Sigma_SFR (~0.35 dex at Sigma_M =108^M_sun/kpc^2) at any given Sigma_M compared to their undisturbed counterparts. The excess is independent on the degree of stripping and of the amount of star formation in the tails and it is visible at all galactocentric distances within the disks, suggesting that the star formation is most likely induced by compression waves from ram pressure. Such excess is larger for less massive galaxies and decreases with increasing mass. As stripping galaxies are characterised by ionised gas beyond the stellar disk, we also investigate the properties of 411 star forming clumps found in the galaxy tails. At any given stellar mass density, these clumps are systematically forming stars at a higher rate than in the disk, but differences are reconciled when we just consider the mass formed in the last few 10^8yr ago, suggesting that on these timescales the local mode of star formation is similar in the tails and in the disks.Comment: 20 pages, 13 figures, accepted for publication in Ap

    The GALFA-HI Compact Cloud Catalog

    Full text link
    We present a catalog of 1964 isolated, compact neutral hydrogen clouds from the Galactic Arecibo L-Band Feed Array Survey Data Release One (GALFA-HI DR1). The clouds were identified by a custom machine-vision algorithm utilizing Difference of Gaussian kernels to search for clouds smaller than 20'. The clouds have velocities typically between |VLSR| = 20-400 km/s, linewidths of 2.5-35 km/s, and column densities ranging from 1 - 35 x 10^18 cm^-2. The distances to the clouds in this catalog may cover several orders of magnitude, so the masses may range from less than a Solar mass for clouds within the Galactic disc, to greater than 10^4 Solar Masses for HVCs at the tip of the Magellanic Stream. To search for trends, we separate the catalog into five populations based on position, velocity, and linewidth: high velocity clouds (HVCs); galaxy candidates; cold low velocity clouds (LVCs); warm, low positive-velocity clouds in the third Galactic Quadrant; and the remaining warm LVCs. The observed HVCs are found to be associated with previously-identified HVC complexes. We do not observe a large population of isolated clouds at high velocities as some models predict. We see evidence for distinct histories at low velocities in detecting populations of clouds corotating with the Galactic disc and a set of clouds that is not corotating.Comment: 34 Pages, 9 Figures, published in ApJ (2012, ApJ, 758, 44), this version has the corrected fluxes and corresponding flux histogram and masse
    corecore