We present a power spectral analysis of Spitzer images of the Large
Magellanic Cloud. The power spectra of the FIR emission show two different
power laws. At larger scales (kpc) the slope is ~ -1.6, while at smaller ones
(tens to few hundreds of parsecs) the slope is steeper, with a value ~ -2.9.
The break occurs at a scale around 100-200 pc. We interpret this break as the
scale height of the dust disk of the LMC. We perform high resolution
simulations with and without stellar feedback. Our AMR hydrodynamic simulations
of model galaxies using the LMC mass and rotation curve, confirm that they have
similar two-component power-laws for projected density and that the break does
indeed occur at the disk thickness. Power spectral analysis of velocities
betrays a single power law for in-plane components. The vertical component of
the velocity shows a flat behavior for large structures and a power law similar
to the in-plane velocities at small scales. The motions are highly anisotropic
at large scales, with in-plane velocities being much more important than
vertical ones. In contrast, at small scales, the motions become more isotropic.Comment: 8 pages, 4 figures, talk presented at "Galaxies and their Masks",
celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To
be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I.
Puerar