1,503 research outputs found

    Peptide self‐assembled nanostructures: from models to therapeutic peptides

    Get PDF
    : Self-assembly is the most suitable approach to obtaining peptide-based materials on the nano- and mesoscopic scales. Applications span from peptide drugs for personalized therapy to light harvesting and electron conductive media for solar energy production and bioelectronics, respectively. In this study, we will discuss the self-assembly of selected model and bioactive peptides, in particular reviewing our recent work on the formation of peptide architectures of nano- and mesoscopic size in solution and on solid substrates. The hierarchical and cooperative characters of peptide self-assembly will be highlighted, focusing on the structural and dynamical properties of the peptide building blocks and on the nature of the intermolecular interactions driving the aggregation phenomena in a given environment. These results will pave the way for the understanding of the still-debated mechanism of action of an antimicrobial peptide (trichogin GA IV) and the pharmacokinetic properties of a peptide drug (semaglutide) currently in use for the therapy of type-II diabetes

    Mixing and localization in random time-periodic quantum circuits of Clifford unitaries

    Get PDF
    How much do local and time-periodic dynamics resemble a random unitary? In the present work, we address this question by using the Clifford formalism from quantum computation. We analyze a Floquet model with disorder, characterized by a family of local, time-periodic, and random quantum circuits in one spatial dimension. We observe that the evolution operator enjoys an extra symmetry at times that are a half-integer multiple of the period. With this, we prove that after the scrambling time, namely, when any initial perturbation has propagated throughout the system, the evolution operator cannot be distinguished from a (Haar) random unitary when all qubits are measured with Pauli operators. This indistinguishability decreases as time goes on, which is in high contrast to the more studied case of (time-dependent) random circuits. We also prove that the evolution of Pauli operators displays a form of mixing. These results require the dimension of the local subsystem to be large. In the opposite regime, our system displays a novel form of localization, produced by the appearance of effective one-sided walls, which prevent perturbations from crossing the wall in one direction but not the other

    Novel geopolymers incorporating red mud and waste glass cullet

    Get PDF
    Red mud presents significant environmental problems, so that its incorporation in geopolymers could represent an alternative solution to produce valuable products from this residue. Novel geopolymers using red mud as source of alumina and waste glass as silica supplier were developed, using sodium hydroxide as the only ` non- waste' material. The formation of a homogeneous polymeric gel, confirmed by solid- state NMR and EDX analysis, promoted the stabilization of possible pollutants. Moreover, the materials exhibit a remarkable compressive strength (up to 45 MPa, for 60 wt% red mud)

    Performance of the Fully Digital FPGA-based Front-End Electronics for the GALILEO Array

    Full text link
    In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. The digital processing of the data from the GALILEO germanium detectors has demonstrated the capability to achieve an energy resolution of 1.53 per mil at an energy of 1.33 MeV.Comment: 5 pages, 6 figures, preprint version of IEEE Transactions on Nuclear Science paper submitted for the 19th IEEE Real Time Conferenc

    A phenomenological approach to normal form modeling: a case study in laser induced nematodynamics

    Full text link
    An experimental setting for the polarimetric study of optically induced dynamical behavior in nematic liquid crystal films has allowed to identify most notably some behavior which was recognized as gluing bifurcations leading to chaos. This analysis of the data used a comparison with a model for the transition to chaos via gluing bifurcations in optically excited nematic liquid crystals previously proposed by G. Demeter and L. Kramer. The model of these last authors, proposed about twenty years before, does not have the central symmetry which one would expect for minimal dimensional models for chaos in nematics in view of the time series. What we show here is that the simplest truncated normal forms for gluing, with the appropriate symmetry and minimal dimension, do exhibit time signals that are embarrassingly similar to the ones found using the above mentioned experimental settings. The gluing bifurcation scenario itself is only visible in limited parameter ranges and substantial aspect of the chaos that can be observed is due to other factors. First, out of the immediate neighborhood of the homoclinic curve, nonlinearity can produce expansion leading to chaos when combined with the recurrence induced by the homoclinic behavior. Also, pairs of symmetric homoclinic orbits create extreme sensitivity to noise, so that when the noiseless approach contains a rich behavior, minute noise can transform the complex damping into sustained chaos. Leonid Shil'nikov taught us that combining global considerations and local spectral analysis near critical points is crucial to understand the phenomenology associated to homoclinic bifurcations. Here this helps us construct a phenomenological approach to modeling experiments in nonlinear dissipative contexts.Comment: 25 pages, 9 figure

    In vivo and in vitro evidence that intrinsic upper- and lower-limb skeletal muscle function is unaffected by ageing and disuse in oldest-old humans

    Get PDF
    Aim: To parse out the impact of advanced ageing and disuse on skeletal muscle function, we utilized both in vivo and in vitro techniques to comprehensively assess upper- and lower-limb muscle contractile properties in 8 young (YG; 25 6 years) and 8 oldest-old mobile (OM; 87 5 years) and 8 immobile (OI; 88 4 years) women. Methods: In vivo, maximal voluntary contraction (MVC), electrically evoked resting twitch force (RT), and physiological cross-sectional area (PCSA) of the quadriceps and elbow flexors were assessed. Muscle biopsies of the vastus lateralis and biceps brachii facilitated the in vitro assessment of single fibre-specific tension (Po). Results: In vivo, compared to the young, both the OM and OI exhibited a more pronounced loss of MVC in the lower limb [OM (60%) and OI (75%)] than the upper limb (OM = 51%; OI = 47%). Taking into account the reduction in muscle PCSA (OM = 10%; OI = 18%), only evident in the lower limb, by calculating voluntary muscle-specific force, the lower limb of the OI (40%) was more compromised than the OM (13%). However, in vivo, RT in both upper and lower limbs (approx. 9.8 N m cm 2) and Po (approx. 123 mN mm 2), assessed in vitro, implies preserved intrinsic contractile function in all muscles of the oldest-old and were well correlated (r = 0.81). Conclusion: These findings suggest that in the oldest-old, neither advanced ageing nor disuse, per se, impacts intrinsic skeletal muscle function, as assessed in vitro. However, in vivo, muscle function is attenuated by age and exacerbated by disuse, implicating factors other than skeletal muscle, such as neuromuscular control, in this diminution of function. Keywords in vitro, in vivo, oldest-old, sarcopeni

    Problematiche di produzione di stampati e forgiati in acciaio inossidabile ASTM A182 F55

    Get PDF
    Nella presente memoria viene descritta la messa a punto del ciclo produttivo di due componenti in acciaiosuper duplex ASTM A182 F55, da realizzare uno mediante stampaggio ed uno mediante fucinatura. Verràdescritto il procedimento di deformazione plastica a caldo di entrambi i pezzi e il successivo trattamentotermico al fine di ottenere le caratteristiche meccaniche e la microstruttura desiderata. I risultati ottenuti daqueste prove dovranno fornire le basi per l’effettiva messa in produzione dei due componenti
    • 

    corecore