45 research outputs found

    The SAMI Galaxy Survey: Revising the Fraction of Slow Rotators in IFS Galaxy Surveys

    Get PDF
    The fraction of galaxies supported by internal rotation compared to galaxies stabilized by internal pressure provides a strong constraint on galaxy formation models. In integral field spectroscopy surveys, this fraction is biased because survey instruments typically only trace the inner parts of the most massive galaxies. We present aperture corrections for the two most widely used stellar kinematic quantities V/σV/\sigma and λR\lambda_{R}. Our demonstration involves integral field data from the SAMI Galaxy Survey and the ATLAS3D^{\rm{3D}} Survey. We find a tight relation for both V/σV/\sigma and λR\lambda_{R} when measured in different apertures that can be used as a linear transformation as a function of radius, i.e., a first-order aperture correction. We find that V/σV/\sigma and λR\lambda_{R} radial growth curves are well approximated by second order polynomials. By only fitting the inner profile (0.5ReR_{\rm{e}}), we successfully recover the profile out to one ReR_{\rm{e}} if a constraint between the linear and quadratic parameter in the fit is applied. However, the aperture corrections for V/σV/\sigma and λR\lambda_{R} derived by extrapolating the profiles perform as well as applying a first-order correction. With our aperture-corrected λR\lambda_{R} measurements, we find that the fraction of slow rotating galaxies increases with stellar mass. For galaxies with log⁥M∗/M⊙>\log M_{*}/M_{\odot}> 11, the fraction of slow rotators is 35.9±4.335.9\pm4.3 percent, but is underestimated if galaxies without coverage beyond one ReR_{\rm{e}} are not included in the sample (24.2±5.324.2\pm5.3 percent). With measurements out to the largest aperture radius the slow rotator fraction is similar as compared to using aperture corrected values (38.3±4.438.3\pm4.4 percent). Thus, aperture effects can significantly bias stellar kinematic IFS studies, but this bias can now be removed with the method outlined here.Comment: Accepted for Publication in the Monthly Notices of the Royal Astronomical Society. 16 pages and 11 figures. The key figures of the paper are: 1, 4, 9, and 1

    The SAMI Galaxy Survey: Global stellar populations on the size-mass plane

    Get PDF
    We present an analysis of the global stellar populations of galaxies in the SAMI Galaxy Survey. Our sample consists of 1319 galaxies spanning four orders of magnitude in stellar mass and includes all morphologies and environments. We derive luminosity-weighted, single stellar population equivalent stellar ages, metallicities and alpha enhancements from spectra integrated within one effective radius apertures. Variations in galaxy size explain the majority of the scatter in the age--mass and metallicity--mass relations. Stellar populations vary systematically in the plane of galaxy size and stellar mass, such that galaxies with high stellar surface mass density are older, more metal-rich and alpha-enhanced than less dense galaxies. Galaxies with high surface mass densities have a very narrow range of metallicities, however, at fixed mass, the spread in metallicity increases substantially with increasing galaxy size (decreasing density). We identify residual correlations with morphology and environment. At fixed mass and size, galaxies with late-type morphologies, small bulges and low Sersic n are younger than early-type, high n, high bulge-to-total galaxies. Age and metallicity both show small residual correlations with environment; at fixed mass and size, galaxies in denser environments or more massive halos are older and somewhat more metal rich than those in less dense environments. We connect these trends to evolutionary tracks within the size--mass plane.Comment: 25 pages, 18 figures, MNRAS in press Corrected typo in author lis

    FLUXO DE TRABALHO DE UM BANCO DE LEITE HUMANO:: EXPERIÊNCIA DISCENTE NO GERENCIAMENTO EM ENFERMAGEM

    Get PDF
    Objetivo: Relatar a experiĂȘncia na elaboração de um fluxo do processo de trabalho em um Banco de Leite Humano como demanda de estĂĄgio supervisionado em Gerenciamento de enfermagem. MĂ©todo: Trata-se de um relato de experiĂȘncia descrito na perspectiva de discentes alocadas no setor da Banco de leite Humano de um hospital pĂșblico no ParanĂĄ na vigĂȘncia do estĂĄgio do mĂȘs de fevereiro a marco de 2022. Para a confecção do fluxo, foram utilizados os Procedimentos Operacionais PadrĂŁo do setor bem como a observação direta do fluxo na rotina do serviço. Resultados: O fluxo do processo de trabalho no Banco de leite Humano foi representado esquematicamente desde a etapa da recepção do Leite Humano ordenhado cru atĂ© o Porcionamento pasteurizado. Totalizaram-se 14 etapas cujo quais contemplam respectivamente a indicação dos Procedimentos Operacionais PadrĂŁo para detalhamento do tema. Este fluxo foi incorporado no manual institucionalizado do setor. ConclusĂŁo: A elaboração do fluxo permitiu conhecer os aspectos que envolvem um setor e a relevĂąncia de registrar a sua operacionalização. Esta operacionalização Ă© pautada sobretudo em observĂąncia Ă  normativas institucionais que permeiam cada etapa, desde a recepção do Leite Humano ordenhado cru atĂ© o pĂșblico a quem ele se destina visando segurança. O estĂĄgio constituiu-se relevante ao aproximar as acadĂȘmicas Ă  dimensĂŁo gerencial do enfermeiro no sentido de elaborar ferramentas de trabalho que amparam o cuidar/assistir pela enfermagem

    The SAMI Galaxy Survey: kinematic alignments of early-type galaxies in A119 and A168

    Get PDF
    We investigate the kinematic alignments of luminous early-type galaxies (M r ≀ −19.5 mag) in A119 and A168 using the kinematic position angles (PAkin{{\rm{PA}}}_{{\rm{kin}}}) from the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) survey data, motivated by the implication of the galaxy spin alignment in a cosmological context. To increase the size of our sample for statistical significance, we also use the photometric position angles (PAphot{{\rm{PA}}}_{{\rm{phot}}}) for galaxies that have not been observed by SAMI, if their ellipticities are higher than 0.15. Our luminous early-type galaxies tend to prefer the specific position angles in both clusters, confirming the results of Kim et al., who recently found the kinematic alignment of early-type galaxies in the Virgo cluster based on the ATLAS 3D integral-field spectroscopic data. This alignment signal is more prominent for galaxies in the projected phase-space regions dominated by infalling populations. Furthermore, the alignment angles are closely related to the directions of the filamentary structures around clusters. The results lead us to conclude that many cluster early-type galaxies are likely to be accreted along filaments while maintaining their spin axes, which are predetermined before cluster infall

    The SAMI Galaxy Survey : mass as the driver of the kinematic morphology - density relation in clusters

    Get PDF
    We examine the kinematic morphology of early-type galaxies (ETGs) in eight galaxy clusters in the Sydney-AAO Multi-object Integral-field spectrograph Galaxy Survey. The clusters cover a mass range of 14.2log(M200/M☉) <15.2 and we measure spatially resolved stellar kinematics for 315 member galaxies with stellar masses 10.0 < log(M*/M☉) ≀ 11.7 within 1 R 200 of the cluster centers. We calculate the spin parameter, λ R , and use this to classify the kinematic morphology of the galaxies as fast or slow rotators (SRs). The total fraction of SRs in the ETG population is F SR = 0.14 ± 0.02 and does not depend on host cluster mass. Across the eight clusters, the fraction of SRs increases with increasing local overdensity. We also find that the slow-rotator fraction increases at small clustercentric radii (R cl < 0.3 R 200), and note that there is also an increase in the slow-rotator fraction at R cl ~ 0.6 R 200. The SRs at these larger radii reside in the cluster substructure. We find that the strongest increase in the slow-rotator fraction occurs with increasing stellar mass. After accounting for the strong correlation with stellar mass, we find no significant relationship between spin parameter and local overdensity in the cluster environment. We conclude that the primary driver for the kinematic morphology–density relationship in galaxy clusters is the changing distribution of galaxy stellar mass with the local environment. The presence of SRs in the substructure suggests that the cluster kinematic morphology–density relationship is a result of mass segregation of slow-rotating galaxies forming in groups that later merge with clusters and sink to the cluster center via dynamical friction.Publisher PDFPeer reviewe

    The SAMI Galaxy Survey: revisiting galaxy classification through high-order stellar kinematics

    Get PDF
    Recent cosmological hydrodynamical simulations suggest that integral field spectroscopy can connect the high-order stellar kinematic moments h3 (~skewness) and h4 (~kurtosis) in galaxies to their cosmological assembly history. Here, we assess these results by measuring the stellar kinematics on a sample of 315 galaxies, without a morphological selection, using two-dimensional integral field data from the SAMI Galaxy Survey. Proxies for the spin parameter (λRe{\lambda }_{{R}_{{\rm{e}}}}) and ellipticity (Ï”e{\epsilon }_{{\rm{e}}}) are used to separate fast and slow rotators; there exists a good correspondence to regular and non-regular rotators, respectively, as also seen in earlier studies. We confirm that regular rotators show a strong h3 versus V/σV/\sigma anti-correlation, whereas quasi-regular and non-regular rotators show a more vertical relation in h3 and V/σV/\sigma . Motivated by recent cosmological simulations, we develop an alternative approach to kinematically classify galaxies from their individual h3 versus V/σV/\sigma signatures. Within the SAMI Galaxy Survey, we identify five classes of high-order stellar kinematic signatures using Gaussian mixture models. Class 1 corresponds to slow rotators, whereas Classes 2–5 correspond to fast rotators. We find that galaxies with similar {\lambda }_{{R}_{{\rm{e}}}}\mbox{--}{\epsilon }_{{\rm{e}}} values can show distinctly different {h}_{3}\mbox{--}V/\sigma signatures. Class 5 objects are previously unidentified fast rotators that show a weak h3 versus V/σV/\sigma anti-correlation. From simulations, these objects are predicted to be disk-less galaxies formed by gas-poor mergers. From morphological examination, however, there is evidence for large stellar disks. Instead, Class 5 objects are more likely disturbed galaxies, have counter-rotating bulges, or bars in edge-on galaxies. Finally, we interpret the strong anti-correlation in h3 versus V/σV/\sigma as evidence for disks in most fast rotators, suggesting a dearth of gas-poor mergers among fast rotators

    The SAMI Galaxy Survey : spatially resolving the main sequence of star formation

    Get PDF
    We present the ∌800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O iii]/H ÎČ, [N ii]/H α, [S ii]/H α, and [O i]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.Publisher PDFPeer reviewe

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    THE SAMI GALAXY SURVEY: REVISITING GALAXY CLASSIFICATION THROUGH HIGH-ORDER STELLAR KINEMATICS

    Get PDF
    Recent cosmological hydrodynamical simulations suggest that integral field spectroscopy can connect the high-order stellar kinematic moments h3 (~skewness) and h4 (~kurtosis) in galaxies to their cosmological assembly history. Here, we assess these results by measuring the stellar kinematics on a sample of 315 galaxies, without a morphological selection, using 2D integral field data from the SAMI Galaxy Survey. A proxy for the spin parameter (λRe\lambda_{R_e}) and ellipticity (Ï”e\epsilon_e) are used to separate fast and slow rotators; there exists a good correspondence to regular and non-regular rotators, respectively, as also seen in earlier studies. We confirm that regular rotators show a strong h3 versus V/σV/\sigma anti-correlation, whereas quasi-regular and non-regular rotators show a more vertical relation in h3 and V/σV/\sigma. Motivated by recent cosmological simulations, we develop an alternative approach to kinematically classify galaxies from their individual h3 versus V/σV/\sigma signatures. We identify five classes of high-order stellar kinematic signatures using Gaussian mixture models. Class 1 corresponds to slow rotators, whereas Classes 2-5 correspond to fast rotators. We find that galaxies with similar λRe−ϔe\lambda_{R_e}-\epsilon_e values can show distinctly different h3-V/σV/\sigma signatures. Class 5 objects are previously unidentified fast rotators that show a weak h3 versus V/σV/\sigma anti-correlation. These objects are predicted to be disk-less galaxies formed by gas-poor mergers. From morphological examination, however, there is evidence for large stellar disks. Instead, Class 5 objects are more likely disturbed galaxies, have counter-rotating bulges, or bars in edge-on galaxies. Finally, we interpret the strong anti-correlation in h3 versus V/σV/\sigma as evidence for disks in most fast rotators, suggesting a dearth of gas-poor mergers among fast rotators.Comment: Accepted for Publication in The Astrophysical Journal. 35 pages and 30 figures, abstract abridged for arXiv submission. The key figures of the paper are: 7, 11, 12 , and 1
    corecore