136 research outputs found

    Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH4) deficiencies

    Get PDF
    BACKGROUND: Tetrahydrobiopterin (BH CONCLUSION: Although the total body of evidence in the literature was mainly rated as low or very low, these consensus guidelines will help to harmonize clinical practice and to standardize and improve care for B

    The clinical spectrum of SMA-PME and in vitro normalization of its cellular ceramide profile

    Get PDF
    OBJECTIVE: The objectives of this study were to define the clinical and biochemical spectrum of spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) and to determine if aberrant cellular ceramide accumulation could be normalized by enzyme replacement. METHODS: Clinical features of 6 patients with SMA-PME were assessed by retrospective chart review, and a literature review of 24 previously published cases was performed. Leukocyte enzyme activity of acid ceramidase was assessed with a fluorescence-based assay. Skin fibroblast ceramide content and was assessed by high performance liquid chromatography, electrospray ionization tandem mass spectroscopy. Enzyme replacement was assessed using recombinant human acid ceramidase (rhAC) in vitro. RESULTS: The six new patients showed the hallmark features of SMA-PME, with variable initial symptom and age of onset. Five of six patients carried at least one of the recurrent SMA-PME variants observed in two specific codons of ASAH1. A review of 30 total cases revealed that patients who were homozygous for the most common c.125C \u3e T variant presented in the first decade of life with limb-girdle weakness as the initial symptom. Sensorineural hearing loss was associated with the c.456A \u3e C variant. Leukocyte acid ceramidase activity varied from 4.1%-13.1% of controls. Ceramide species in fibroblasts were detected and total cellular ceramide content was elevated by 2 to 9-fold compared to controls. Treatment with rhAC normalized ceramide profiles in cultured fibroblasts to control levels within 48 h. INTERPRETATION: This study details the genotype-phenotype correlations observed in SMA-PME and shows the impact of rhAC to correct the abnormal cellular ceramide profile in cells

    Paroxysmal eye–head movements in Glut1 deficiency syndrome

    Get PDF
    Objective:To describe a characteristic paroxysmal eye–head movement disorder that occurs in infants with Glut1 deficiency syndrome (Glut1 DS).Methods:We retrospectively reviewed the medical charts of 101 patients with Glut1 DS to obtain clinical data about episodic abnormal eye movements and analyzed video recordings of 18 eye movement episodes from 10 patients.Results:A documented history of paroxysmal abnormal eye movements was found in 32/101 patients (32%), and a detailed description was available in 18 patients, presented here. Episodes started before age 6 months in 15/18 patients (83%), and preceded the onset of seizures in 10/16 patients (63%) who experienced both types of episodes. Eye movement episodes resolved, with or without treatment, by 6 years of age in 7/8 patients with documented long-term course. Episodes were brief (usually &lt;5 minutes). Video analysis revealed that the eye movements were rapid, multidirectional, and often accompanied by a head movement in the same direction. Eye movements were separated by clear intervals of fixation, usually ranging from 200 to 800 ms. The movements were consistent with eye–head gaze saccades. These movements can be distinguished from opsoclonus by the presence of a clear intermovement fixation interval and the association of a same-direction head movement.Conclusions:Paroxysmal eye–head movements, for which we suggest the term aberrant gaze saccades, are an early symptom of Glut1 DS in infancy. Recognition of the episodes will facilitate prompt diagnosis of this treatable neurodevelopmental disorder.</jats:sec

    AADC deficiency from infancy to adulthood: Symptoms and developmental outcome in an international cohort of 63 patients

    Get PDF
    Aromatic l-amino acid decarboxylase deficiency (AADCD) is a rare, autosomal recessive neurodevelopmental disorder characterized by impaired synthesis of dopamine, noradrenaline, adrenaline and serotonin, leading to a complex syndrome of motor, behavioral, and autonomic symptoms. This retrospective study assessed the symptoms and developmental outcome of a large international cohort of patients with AADCD via physician and/or caregiver responses to a detailed, standardized questionnaire. Sixty-three patients (60% female; ages 6 months-36 years, median 7 years; 58 living) from 23 individual countries participated. Common symptoms at onset (median age 3 months, range 0-12 months) were hypotonia, developmental delay, and/or oculogyric crises. Oculogyric crises were present in 97% of patients aged 2 to 12 years, occurred in the majority of patients in all age groups, and tended to be most severe during early childhood. Prominent non-motor symptoms were sleep disturbance, irritable mood, and feeding difficulties. The majority of subjects (70%) had profound motor impairment characterized by absent head control and minimal voluntary movement, while 17% had mild motor impairment and were able to walk independently. Dopamine agonists were the medications most likely to produce some symptomatic benefit, but were associated with dose-limiting side effects (dyskinesia, insomnia, irritability, vomiting) that led to discontinuation 25% of the time. The age distribution of our cohort (70% of subjects under age 13 years) and the observation of a greater proportion of patients with a more severe disease phenotype in the younger compared to the older patients, both suggest a significant mortality risk during childhood for patients with severe disease

    Gene therapy for aromatic L-amino acid decarboxylase deficiency: Requirements for safe application and knowledge-generating follow-up

    Get PDF
    The autosomal recessive defect of aromatic L-amino acid decarboxylase (AADC) leads to a severe neurological disorder with manifestation in infancy due to a pronounced, combined deficiency of dopamine, serotonin and catecholamines. The success of conventional drug treatment is very limited, especially in patients with a severe phenotype. The development of an intracerebral AAV2-based gene delivery targeting the putamen or substantia nigra started more than 10 years ago. Recently, the putaminally-delivered construct, Eladocagene exuparvovec has been approved by the European Medicines Agency and by the British Medicines and Healthcare products Regulatory Agency. This now available gene therapy provides for the first time also for AADC deficiency (AADCD) a causal therapy, leading this disorder into a new therapeutic era. By using a standardized Delphi approach members of the International Working Group on Neurotransmitter related Disorders (iNTD) developed structural requirements and recommendations for the preparation, management and follow-up of AADC deficiency patients who undergo gene therapy. This statement underlines the necessity of a framework for a quality-assured application of AADCD gene therapy including Eladocagene exuparvovec. Treatment requires prehospital, inpatient and posthospital care by a multidisciplinary team in a specialized and qualified therapy center. Due to lack of data on long-term outcomes and the comparative efficacy of alternative stereotactic procedures and brain target sites, a structured follow-up plan and systematic documentation of outcomes in a suitable, industry-independent registry study are necessary

    A phase Ib/IIa clinical trial of dantrolene sodium in patients with Wolfram syndrome

    Get PDF
    BACKGROUNDWolfram syndrome is a rare ER disorder characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. Although there is no treatment for Wolfram syndrome, preclinical studies in cell and rodent models suggest that therapeutic strategies targeting ER calcium homeostasis, including dantrolene sodium, may be beneficial.METHODSBased on results from preclinical studies on dantrolene sodium and ongoing longitudinal studies, we assembled what we believe is the first-ever clinical trial in pediatric and adult Wolfram syndrome patients with an open-label phase Ib/IIa trial design. The primary objective was to assess the safety and tolerability of dantrolene sodium in adult and pediatric Wolfram syndrome patients. Secondary objectives were to evaluate the efficacy of dantrolene sodium on residual pancreatic β cell functions, visual acuity, quality-of-life measures related to vision, and neurological functions.RESULTSDantrolene sodium was well tolerated by Wolfram syndrome patients. Overall, β cell functions were not significantly improved, but there was a significant correlation between baseline β cell functions and change in β cell responsiveness (R2, P = 0.004) after 6-month dantrolene therapy. Visual acuity and neurological functions were not improved by 6-month dantrolene sodium. Markers of inflammatory cytokines and oxidative stress, such as IFN-γ, IL-1β, TNF-α, and isoprostane, were elevated in subjects.CONCLUSIONThis study justifies further investigation into using dantrolene sodium and other small molecules targeting the ER for treatment of Wolfram syndrome.TRIAL REGISTRATIONClinicalTrials.gov identifier NCT02829268FUNDINGNIH/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (DK112921, DK113487, DK020579), NIH/National Center for Advancing Translational Sciences (NCATS) (TR002065, TR000448), NIH training grant (F30DK111070), Silberman Fund, Ellie White Foundation, Snow Foundation, Unravel Wolfram Syndrome Fund, Stowe Fund, Eye Hope Foundation, Feiock Fund, Washington University Institute of Clinical and Translational Sciences grant UL1TR002345 from NIH/NCATS, Bursky Center for Human Immunology & Immunotherapy Programs

    2-Pyrrolidinone and Succinimide as Clinical Screening Biomarkers for GABA-Transaminase Deficiency: Anti-seizure Medications Impact Accurate Diagnosis

    Get PDF
    Broad-scale untargeted biochemical phenotyping is a technology that supplements widely accepted assays, such as organic acid, amino acid, and acylcarnitine analyses typically utilized for the diagnosis of inborn errors of metabolism. In this study, we investigate the analyte changes associated with 4-aminobutyrate aminotransferase (ABAT, GABA transaminase) deficiency and treatments that affect GABA metabolism. GABA-transaminase deficiency is a rare neurodevelopmental and neurometabolic disorder caused by mutations in ABAT and resulting in accumulation of GABA in the cerebrospinal fluid (CSF). For that reason, measurement of GABA in CSF is currently the primary approach to diagnosis. GABA-transaminase deficiency results in severe developmental delay with intellectual disability, seizures, and movement disorder, and is often associated with death in childhood. Using an untargeted metabolomics platform, we analyzed EDTA plasma, urine, and CSF specimens from four individuals with GABA-transaminase deficiency to identify biomarkers by comparing the biochemical profile of individual patient samples to a pediatric-centric population cohort. Metabolomic analyses of over 1,000 clinical plasma samples revealed a rich source of biochemical information. Three out of four patients showed significantly elevated levels of the molecule 2-pyrrolidinone (Z-score ≥ 2) in plasma, and whole exome sequencing revealed variants of uncertain significance in ABAT. Additionally, these same patients also had elevated levels of succinimide or its ring-opened form, succinamic acid, in plasma, urine, and CSF and/or homocarnosine in urine and CSF. In the analysis of clinical EDTA plasma samples, the levels of succinamic acid and 2-pyrrolidinone showed a high level of correlation (R = 0.72), indicating impairment in GABA metabolism and further supporting the association with GABA-transaminase deficiency and the pathogenicity of the ABAT variants. Further analysis of metabolomic data across our patient population revealed the association of elevated levels of 2-pyrrolidinone with administration of vigabatrin, a commonly used anti-seizure medication and a known inhibitor of GABA-transaminase. These data indicate that anti-seizure medications may alter the biochemical and metabolomic data, potentially impacting the interpretation and diagnosis for the patient. Further, these data demonstrate the power of combining broad scale genotyping and phenotyping technologies to diagnose inherited neurometabolic disorders and support the use of metabolic phenotyping of plasma to screen for GABA-transaminase deficiency

    Acute-Phase Serum Amyloid A: An Inflammatory Adipokine and Potential Link between Obesity and Its Metabolic Complications

    Get PDF
    BACKGROUND: Obesity is associated with low-grade chronic inflammation, and serum markers of inflammation are independent risk factors for cardiovascular disease (CVD). However, the molecular and cellular mechanisms that link obesity to chronic inflammation and CVD are poorly understood. METHODS AND FINDINGS: Acute-phase serum amyloid A (A-SAA) mRNA levels, and A-SAA adipose secretion and serum levels were measured in obese and nonobese individuals, obese participants who underwent weight-loss, and persons treated with the insulin sensitizer rosiglitazone. Inflammation-eliciting activity of A-SAA was investigated in human adipose stromal vascular cells, coronary vascular endothelial cells and a murine monocyte cell line. We demonstrate that A-SAA was highly and selectively expressed in human adipocytes. Moreover, A-SAA mRNA levels and A-SAA secretion from adipose tissue were significantly correlated with body mass index ( r = 0.47; p = 0.028 and r = 0.80; p = 0.0002, respectively). Serum A-SAA levels decreased significantly after weight loss in obese participants ( p = 0.006), as well as in those treated with rosiglitazone ( p = 0.033). The magnitude of the improvement in insulin sensitivity after weight loss was significantly correlated with decreases in serum A-SAA ( r = −0.74; p = 0.034). SAA treatment of vascular endothelial cells and monocytes markedly increased the production of inflammatory cytokines, e.g., interleukin (IL)-6, IL-8, tumor necrosis factor alpha, and monocyte chemoattractant protein-1. In addition, SAA increased basal lipolysis in adipose tissue culture by 47%. CONCLUSIONS: A-SAA is a proinflammatory and lipolytic adipokine in humans. The increased expression of A-SAA by adipocytes in obesity suggests that it may play a critical role in local and systemic inflammation and free fatty acid production and could be a direct link between obesity and its comorbidities, such as insulin resistance and atherosclerosis. Accordingly, improvements in systemic inflammation and insulin resistance with weight loss and rosiglitazone therapy may in part be mediated by decreases in adipocyte A-SAA production
    corecore