8 research outputs found
LIPAD (LRRK2/Luebeck International Parkinson's Disease) Study Protocol:Deep Phenotyping of an International Genetic Cohort
Background: Pathogenic variants in the Leucine-rich repeat kinase 2 (LRRK2) gene are the most common known monogenic cause of Parkinson's disease (PD). LRRK2-linked PD is clinically indistinguishable from idiopathic PD and inherited in an autosomal dominant fashion with reduced penetrance and variable expressivity that differ across ethnicities and geographic regions.Objective: To systematically assess clinical signs and symptoms including non-motor features, comorbidities, medication and environmental factors in PD patients, unaffected LRRK2 pathogenic variant carriers, and controls. A further focus is to enable the investigation of modifiers of penetrance and expressivity of LRRK2 pathogenic variants using genetic and environmental data.Methods: Eligible participants are invited for a personal or online examination which comprises completion of a detailed eCRF and collection of blood samples (to obtain DNA, RNA, serum/plasma, immune cells), urine as well as household dust. We plan to enroll 1,000 participants internationally: 300 with LRRK2-linked PD, 200 with LRRK2 pathogenic variants but without PD, 100 PD patients with pathogenic variants in the GBA or PRKN genes, 200 patients with idiopathic PD, and 200 healthy persons without pathogenic variants.Results: The eCRF consists of an investigator-rated (1 h) and a self-rated (1.5 h) part. The first part includes the Movement Disorder Society Unified Parkinson's Disease Rating, Hoehn &Yahr, and Schwab & England Scales, the Brief Smell Identification Test, and Montreal Cognitive Assessment. The self-rating part consists of a PD risk factor, food frequency, autonomic dysfunction, and quality of life questionnaires, the Pittsburgh Sleep Quality Inventory, and the Epworth Sleepiness as well as the Hospital Anxiety and Depression Scales. The first 15 centers have been initiated and the first 150 participants enrolled (as of March 25th, 2021).Conclusions: LIPAD is a large-scale international scientific effort focusing on deep phenotyping of LRRK2-linked PD and healthy pathogenic variant carriers, including the comparison with additional relatively frequent genetic forms of PD, with a future perspective to identify genetic and environmental modifiers of penetrance and expressivityClinical Trial Registration:ClinicalTrials.gov, NCT04214509
Candida albicans-induced epithelial damage mediates translocation through intestinal barriers
ABSTRACT Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin. IMPORTANCE Candida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer
Rapid Large-Scale COVID-19 Testing during Shortages
The Coronavirus disease 2019 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has resulted in economic and social lockdowns in most countries all over the globe. Early identification of infected individuals is regarded as one of the most important prerequisites for fighting the pandemic and for returning to a ‘New Normal’. Large-scale testing is therefore crucial, but is facing several challenges including shortage of sample collection tools and of molecular biological reagents, and the need for safe electronic communication of medical reports. We present the successful establishment of a holistic SARS-CoV-2 testing platform that covers proband registration, sample collection and shipment, sample testing, and report issuing. The RT-PCR-based virus detection, being central to the platform, was extensively validated: sensitivity and specificity were defined as 96.8% and 100%, respectively; intra-run and inter-run precision were <3%. A novel type of sample swab and an in-house-developed RNA extraction system were shown to perform as good as commercially available products. The resulting flexibility guarantees independence from the current bottlenecks in SARS-CoV-2 testing. Based on our technology, we offered testing at local, national, and global levels. In the present study, we report the results from approx. 18,000 SARS-CoV-2 tests in almost 10,000 individuals from a low-frequency SARS-CoV-2 pandemic area in a homogenous geographical region in north-eastern Germany for a period of 10 weeks (21 March to 31 May 2020). Among the probands, five SARS-CoV-2 positive cases were identified. Comparative analysis of corresponding virus genomes revealed a diverse origin from three of the five currently recognized SARS-CoV-2 phylogenetic clades. Our study exemplifies how preventive SARS-CoV-2 testing can be set up in a rapid and flexible manner. The application of our test has enabled a safe maintenance/resume of critical local infrastructure, e.g., nursing homes where more than 5000 elderlies and caretakers got tested. The strategy outlined by the present study may serve as a blueprint for the implementation of large-scale preventive SARS-CoV-2 testing elsewhere
Effect of paramagnetic impurities on superconductivity in polyhydrides: -wave order parameter in Nd-doped LaH
Polyhydrides are a novel class of superconducting materials with extremely
high critical parameters, which is very promising for applications. On the
other hand, complete experimental study of the magnetic phase diagram for the
best so far known superconductor, lanthanum decahydride LaH, encounters
a serious complication because of the large upper critical magnetic field
(0), exceeding 120-160 T. Partial replacement of La atoms by
magnetic Nd atoms results in a decrease of the upper critical field, which
makes it attainable for existing pulse magnets. We found that addition of
neodymium leads to significant suppression of superconductivity in LaH:
each atomic % of Nd causes decrease in by 10-11 K. Using
strong pulsed magnetic fields up to 68 T, we constructed the magnetic phase
diagram of the ternary (La,Nd)H superhydride, which appears to be
surprisingly linear with | -
|. The pronounced suppression of superconductivity in
LaH by magnetic Nd atoms and the robustness of with
respect to nonmagnetic impurities (e.g., Y, Al, C) under Anderson's theorem
indicate the isotropic (-wave) character of conventional
electron-phonon pairing in the synthesized superhydrides.Comment: Supporting Information is include