127 research outputs found

    High-entropy energy materials: Challenges and new opportunities

    Get PDF
    The essential demand for functional materials enabling the realization of new energy technologies has triggered tremendous efforts in scientific and industrial research in recent years. Recently, high-entropy materials, with their unique structural characteristics, tailorable chemical composition and correspondingly tunable functional properties, have drawn increasing interest in the fields of environmental science and renewable energy technology. Herein, we provide a comprehensive review of this new class of materials in the energy field. We begin with discussions on the latest reports on the applications of high-entropy materials, including alloys, oxides and other entropy-stabilized compounds and composites, in various energy storage and conversion systems. In addition, we describe effective strategies for rationally designing high-entropy materials from computational techniques and experimental aspects. Based on this overview, we subsequently present the fundamental insights and give a summary of their potential advantages and remaining challenges, which will ideally provide researchers with some general guides and principles for the investigation and development of advanced high-entropy materials

    Air-soil diffusive exchange of PAHs in an urban park of Shanghai based on polyethylene passive sampling: Vertical distribution, vegetation influence and diffusive flux

    Get PDF
    Compared with dry and wet deposition rates, air-soil exchange fluxes cannot be directly measured experimentally. Polyethylene passive sampling was applied to assess transport directions and to measure concentration gradients in order to calculate diffusive fluxes of polycyclic aromatic hydrocarbons (PAHs) across the air-soil interface in an urban park of Shanghai, China. Seven campaigns with high spatial resolution sampling at 18 heights between 0 and 200 cm above the ground were conducted in 2017–2018. Air-to-soil deposition was observed, e.g. for phenanthrene, and soil-to-air volatilization for high molecular weight compounds, such as benzo[b]fluoranthene. Significant linear correlations between gaseous PAH concentration and log-transformed height were observed. Influence of vegetation on vertical concentration gradients of gaseous PAHs was insignificant in most cases except during the growing season. Local micrometeorological conditions resulted in a directional eddy diffusion in air and then influenced vertical diffusion of gaseous PAHs. Furthermore, the vertical eddy diffusivity was estimated as a function of distance to the air-soil surface. Air-soil exchange fluxes based on the Mackay\u27s fugacity approach were calculated and confirmed by diffusive fluxes within air layer based on vertical concentration gradient of PAHs and eddy/molecular diffusion. Polyethylene passive sampling technology provides a useful tool to investigate air-soil exchange process

    Overload capacity analysis of extra high voltage AC XLPE submarine cable

    Get PDF
    When submarine cable line fails or other lines need load transfer, it often suffers from emergency ampacity that exceeds the steady-state ampacity. The layout environment of the submarine cable is always complex and changeable, and the overload capacity of the submarine cable in different layout environments is also different. Therefore, it is necessary to analyze the overload capacity of the submarine cable. In this paper, a coupled multi-physical field model by finite element method is established for AC 500 kV XLPE extra high voltage submarine cable in landing section, which is the ampacity bottleneck section of the whole line. The overload capacity of submarine cable in two typical layout environments which are direct buried and within pipeline is analyzed. The results show that the overload capacity of submarine cable in the direct buried environment is much higher than that in the pipeline environment. The allowable emergency time in the direct buried environment is 2–3 times that of the pipeline environment under the same condition. In the two typical layout environments, when the emergency current are 2500 A and 3500 A, the ratio of the emergency time allowed to run in the direct buried environment to that in the pipeline environment is about 5 times under the same initial capacity. The proposed model can provide a reference for dynamic capacity control of the extra high voltage submarine cable

    Regulation of autophagy by natural polyphenols in the treatment of diabetic kidney disease: therapeutic potential and mechanism

    Get PDF
    Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a leading cause of end-stage renal disease worldwide. Autophagy plays an important role in maintaining cellular homeostasis in renal physiology. In DKD, the accumulation of advanced glycation end products induces decreased renal autophagy-related protein expression and transcription factor EB (TFEB) nuclear transfer, leading to impaired autophagy and lysosomal function and blockage of autophagic flux. This accelerates renal resident cell injury and apoptosis, mediates macrophage infiltration and phenotypic changes, ultimately leading to aggravated proteinuria and fibrosis in DKD. Natural polyphenols show promise in treating DKD by regulating autophagy and promoting nuclear transfer of TFEB and lysosomal repair. This review summarizes the characteristics of autophagy in DKD, and the potential application and mechanisms of some known natural polyphenols as autophagy regulators in DKD, with the goal of contributing to a deeper understanding of natural polyphenol mechanisms in the treatment of DKD and promoting the development of their applications. Finally, we point out the limitations of polyphenols in current DKD research and provide an outlook for their future research

    Considering Genetic Heterogeneity in the Association Analysis Finds Genes Associated With Nicotine Dependence

    Get PDF
    While substantial progress has been made in finding genetic variants associated with nicotine dependence (ND), a large proportion of the genetic variants remain undiscovered. The current research focuses have shifted toward uncovering rare variants, gene-gene/gene-environment interactions, and structural variations predisposing to ND, the impact of genetic heterogeneity in ND has been nevertheless paid less attention. The study of genetic heterogeneity in ND not only could enhance the power of detecting genetic variants with heterogeneous effects in the population but also improve our understanding of genetic etiology of ND. As an initial step to understand genetic heterogeneity in ND, we applied a newly developed heterogeneity weighted U (HWU) method to 26 ND-related genes, investigating heterogeneous effects of these 26 genes in ND. We found no strong evidence of genetic heterogeneity in genes such as CHRNA5. However, results from our analysis suggest heterogeneous effects of CHRNA6 and CHRNB3 on nicotine dependence in males and females. Following the gene-based analysis, we further conduct a joint association analysis of two gene clusters, CHRNA5-CHRNA3-CHRNB4 and CHRNB3-CHRNA6. While both CHRNA5-CHRNA3-CHRNB4 and CHRNB3-CHRNA6 clusters are significantly associated with ND, there is a much stronger association of CHRNB3-CHRNA6 with ND when considering heterogeneous effects in gender (p-value = 2.11E-07)

    Development of 5G-based Remote Ultrasound Education: Current Status and Future Trends

    Get PDF
    The rapid advancement of 5G technology has opened new possibilities for remote ultrasound education, offering the potential to enhance training, real-time consultation, and quality control for primary ultrasound doctors. The 5G remote ultrasound education has the potential to revolutionize the way primary ultrasound doctors are trained and supported, ultimately leading to improved patient care and outcomes. By understanding the current status and development trends of this cutting-edge educational approach, the medical community can better prepare for and contribute to its ongoing evolution. Looking towards the future, the development trends in 5G remote ultrasound education are expected to revolve around continuous improvement and innovation in educational methods and technologies. This includes the exploration of artificial intelligence and machine learning applications, the expansion of telemedicine and telementoring programs, and the development of personalized learning plans tailored to individual learners\u27 needs. This article aims to offer an overview of the current status and applications of 5G remote ultrasound education, including the development of theoretical courses and network construction within our institutes, and to discuss future trends in this field

    SketchMate: Deep Hashing for Million-Scale Human Sketch Retrieval

    Get PDF
    We propose a deep hashing framework for sketch retrieval that, for the first time, works on a multi-million scale human sketch dataset. Leveraging on this large dataset, we explore a few sketch-specific traits that were otherwise under-studied in prior literature. Instead of following the conventional sketch recognition task, we introduce the novel problem of sketch hashing retrieval which is not only more challenging, but also offers a better testbed for large-scale sketch analysis, since: (i) more fine-grained sketch feature learning is required to accommodate the large variations in style and abstraction, and (ii) a compact binary code needs to be learned at the same time to enable efficient retrieval. Key to our network design is the embedding of unique characteristics of human sketch, where (i) a two-branch CNN-RNN architecture is adapted to explore the temporal ordering of strokes, and (ii) a novel hashing loss is specifically designed to accommodate both the temporal and abstract traits of sketches. By working with a 3.8M sketch dataset, we show that state-of-the-art hashing models specifically engineered for static images fail to perform well on temporal sketch data. Our network on the other hand not only offers the best retrieval performance on various code sizes, but also yields the best generalization performance under a zero-shot setting and when re-purposed for sketch recognition. Such superior performances effectively demonstrate the benefit of our sketch-specific design.Comment: Accepted by CVPR201

    Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper

    Get PDF
    精准控制C1分子C-C偶联合成特定C2+化合物是C1化学中极具挑战性的难题。由于C2+化合物(如乙烯和乙醇)在化工和能源领域具有重要用途,将CO2直接转化为C2+产物极具吸引力。发展高效催化剂,实现高电流密度、高C2+选择性、高稳定性的“三高”性能,是推进电催化还原CO2走向实际应用的关键。研究团队针对电催化还原CO2中高CO2还原法拉第效率的催化剂常常活性低的问题,提出了适当提高催化剂活化水的能力对增加CO2还原活性的重要性,发展出氢助碳碳偶联(hydrogen-assisted C-C coupling)的新策略,在氟修饰的铜(F-Cu)催化剂上实现了CO2电催化还原制乙烯和乙醇的新突破。该研究工作实验部分主要由王野、张庆红教授指导,能源材料协同创新中心iChEM2016级博士生马文超、固体表面物理化学国家重点实验室高级工程师谢顺吉(共同第一作者)完成;理论计算部分由程俊教授指导,2017级硕士生刘彤彤(共同第一作者)、2016级博士生樊祺源完成。叶进裕博士为原位红外测试提供了支持。上海光源姜政研究员、孙凡飞博士、杨若欧为同步辐射表征提供了支持。 这是投稿的最终版本,正式出版的论文版本请访问官方链接(https://doi.org/10.1038/s41929-020-0450-0)。Electrocatalytic reduction of CO2 into multi-carbon (C2+) products is a highly attractive route for CO2 utilization. However, the yield of C2+ products remains low because of the limited C2+ selectivity at high CO2 conversion rate. Here, we report a fluorine-modified copper catalyst that exhibits an ultrahigh current density of 1.6 A cm−2 at C2+ (mainly ethylene and ethanol) Faradaic efficiency of 80% for electrocatalytic CO2 reduction in a flow cell. The C2-4 selectivity reaches 85.8% at a single-pass yield of 16.5%. We show a hydrogen-assisted C−C coupling mechanism between adsorbed formyl (CHO) intermediates for C2+ formation. Fluorine enhances water activation, CO adsorption and hydrogenation of adsorbed CO to CHO intermediate that can readily undergo coupling. Our findings offer an opportunity to design highly active and selective CO2 electroreduction catalysts with potential for practical applicationThis work was supported by the National Key Research and Development Program of the Ministry of Science and Technology of China (No. 2017YFB0602201), the National Natural Science Foundation of China (Nos. 21690082, 91545203, 21503176 and 21802110), We thank staffs at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facilities (SSRF) for assistance with the EXAFS measurements.研究工作得到科技部重点研发计划(批准号:2017YFB0602201)和国家自然科学基金(批准号:21690082、91545203、21503176、21802110)项目的资助
    corecore