5,249 research outputs found

    On the design of reliable hybrid wired-wireless network-on-chip architectures

    Get PDF
    With the ever increase in transistor density over technology scaling, energy and performance aware hybrid wire- less Network-on-Chip (WiNoC) has emerged as an alternative solution to the slow conventional wireline NoC design for future System-on-Chip (SoC). However, combining wireless and wireline channels drastically reduces the total reliability of the commu- nication fabric. Besides being lossy, existing feasible wireless solution for WiNoCs, which is in the form of millimeter wave (mm-Wave), relies on free space signal radiation which has high power dissipation with high degradation rate in the signal strength per transmission distance. Alternatively, low power wireless communication fabric in the form of surface wave has been proposed for on-chip communication. With the right design considerations, the reliability and performance benefits of the surface wave channel could be extended. In this paper, we propose a surface wave communication fabric for emerging WiNoCs that is able to match the channel reliability of traditional wireline NoCs. Here, a carefully designed transducer and commercially available thin metal conductor coated with a low cost dielectric material are employed to general surface wave signal to improve the wireless signal transmission gain. Our experimental results demonstrate that, the proposed communication fabric can achieve a 5dB operational bandwidth of about 60GHz around the center frequency (60GHz). By improving the transmission reliability of wireless layer, the proposed communication fabric can improve maximum sustainable load of NoCs by an average of 20.9% and 133.3% compared to existing WiNoCs and wireline NoCs, respectively

    OUTLINE OF GRANITOIDS OF THE CENTRAL ASIA OROGENIC BELT: FOCUSED ON THE SOUTHERN PART

    Get PDF
    the Siberian craton to the north and the TarimNorth China cratons to the south, is a complex collage of microcontinental blocks, island arcs, oceanic crustal remnants and continental marginal facies rocks. It is one of the largest and most complex accretionary orogenic belts and the most important site of Phanerozoic continental growth on the Earth [Jahn et al., 2000, 2004; Kovalenko et al., 2004] The widespread occurrence of large volumes of granitoids, mostly with juvenile sources, is a typical characteristic of the CAOB. These granitoids have been intensely studied (e.g. [Jahn et al., 2000, 2004; Kovalenko et al., 2004; Sorokin et al., 2004; Vladimirov et al., 2001; Han et al., 2010; Wang et al., 2006, 2015; Wu et al., 2011; Li et al., 2013; Yarmolyuk et al., 2002]). However, these studies mainly focused on some certain countries or regions.The Central Asian Orogenic Belt (CAOB), bounded by the Siberian craton to the north and the TarimNorth China cratons to the south, is a complex collage of microcontinental blocks, island arcs, oceanic crustal remnants and continental marginal facies rocks. It is one of the largest and most complex accretionary orogenic belts and the most important site of Phanerozoic continental growth on the Earth [Jahn et al., 2000, 2004; Kovalenko et al., 2004] The widespread occurrence of large volumes of granitoids, mostly with juvenile sources, is a typical characteristic of the CAOB. These granitoids have been intensely studied (e.g. [Jahn et al., 2000, 2004; Kovalenko et al., 2004; Sorokin et al., 2004; Vladimirov et al., 2001; Han et al., 2010; Wang et al., 2006, 2015; Wu et al., 2011; Li et al., 2013; Yarmolyuk et al., 2002]). However, these studies mainly focused on some certain countries or regions

    Heat conduction in one dimensional nonintegrable systems

    Full text link
    Two classes of 1D nonintegrable systems represented by the Fermi-Pasta-Ulam (FPU) model and the discrete ϕ4\phi^4 model are studied to seek a generic mechanism of energy transport in microscopic level sustaining macroscopic behaviors. The results enable us to understand why the class represented by the ϕ4\phi^4 model has a normal thermal conductivity and the class represented by the FPU model does not even though the temperature gradient can be established.Comment: 4 Revtex Pages, 4 Eps figures included, to appear in Phys. Rev. E, March 200

    Initial-state dependence in time-dependent density functional theory

    Full text link
    Time-dependent density functionals in principle depend on the initial state of the system, but this is ignored in functional approximations presently in use. For one electron it is shown there is no initial-state dependence: for any density, only one initial state produces a well-behaved potential. For two non-interacting electrons with the same spin in one-dimension, an initial potential that makes an alternative initial wavefunction evolve with the same density and current as a ground state is calculated. This potential is well-behaved and can be made arbitrarily different from the original potential

    Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome).

    Get PDF
    We report an allelic series of eight mutations in GATA2 underlying Emberger syndrome, an autosomal dominant primary lymphedema associated with a predisposition to acute myeloid leukemia. GATA2 is a transcription factor that plays an essential role in gene regulation during vascular development and hematopoietic differentiation. Our findings indicate that haploinsufficiency of GATA2 underlies primary lymphedema and predisposes to acute myeloid leukemia in this syndrome

    Measurement of Neutrino-Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor

    Full text link
    The νˉee\bar{\nu}_{e}-e^{-} elastic scattering cross-section was measured with a CsI(Tl) scintillating crystal array having a total mass of 187kg. The detector was exposed to an average reactor νˉe\bar{\nu}_{e} flux of 6.4×1012 cm2s1\rm{6.4\times 10^{12} ~ cm^{-2}s^{-1}} at the Kuo-Sheng Nuclear Power Station. The experimental design, conceptual merits, detector hardware, data analysis and background understanding of the experiment are presented. Using 29882/7369 kg-days of Reactor ON/OFF data, the Standard Model(SM) electroweak interaction was probed at the squared 4-momentum transfer range of Q23×106 GeV2\rm{Q^2 \sim 3 \times 10^{-6} ~ GeV^2}. The ratio of experimental to SM cross-sections of ξ=[1.08±0.21(stat)±0.16(sys)] \xi =[ 1.08 \pm 0.21(stat)\pm 0.16(sys)] was measured. Constraints on the electroweak parameters (gV,gA)(g_V , g_A) were placed, corresponding to a weak mixing angle measurement of \s2tw = 0.251 \pm 0.031({\it stat}) \pm 0.024({\it sys}) . Destructive interference in the SM \nuebar -e process was verified. Bounds on anomalous neutrino electromagnetic properties were placed: neutrino magnetic moment at \mu_{\nuebar}< 2.2 \times 10^{-10} \mu_{\rm B} and the neutrino charge radius at -2.1 \times 10^{-32} ~{\rm cm^{2}} < \nuchrad < 3.3 \times 10^{-32} ~{\rm cm^{2}}, both at 90% confidence level.Comment: 18 Figures, 7 Tables; published version as V2 with minor revision from V
    corecore