1,799 research outputs found

    Conditional Support Alignment for Domain Adaptation with Label Shift

    Full text link
    Unsupervised domain adaptation (UDA) refers to a domain adaptation framework in which a learning model is trained based on the labeled samples on the source domain and unlabelled ones in the target domain. The dominant existing methods in the field that rely on the classical covariate shift assumption to learn domain-invariant feature representation have yielded suboptimal performance under the label distribution shift between source and target domains. In this paper, we propose a novel conditional adversarial support alignment (CASA) whose aim is to minimize the conditional symmetric support divergence between the source's and target domain's feature representation distributions, aiming at a more helpful representation for the classification task. We also introduce a novel theoretical target risk bound, which justifies the merits of aligning the supports of conditional feature distributions compared to the existing marginal support alignment approach in the UDA settings. We then provide a complete training process for learning in which the objective optimization functions are precisely based on the proposed target risk bound. Our empirical results demonstrate that CASA outperforms other state-of-the-art methods on different UDA benchmark tasks under label shift conditions

    The effect of deuteration on organic magnetoresistance

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Synthetic Metals. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in SYNTHETIC METALS, 161, 7-8, (2011) DOI 10.1016/j.synthmet.2010.11.04

    Solitude profiles and psychological adjustment in Chinese late adolescence: a person-centered research

    Get PDF
    Objectives: From the perspective of person-centered research, the present study aimed to identify the potential profiles of solitude among late adolescents based on their solitary behavior, motivation, attitude, and time alone. In addition, to echo the paradox of solitude, we further explored the links between solitude profiles and adjustment outcomes.Methods: The participants of the study were 355 late adolescents (56.34% female, M age = 19.71 years old) at three universities in Shanghai, China. Measures of solitary behavior, autonomous motivation for solitude, attitude toward being alone, and time spent alone were collected using adolescents' self-report assessments. The UCLA Loneliness Scale, the Beck Depression Inventory, and the Basic Psychological Needs Scales were measured as indices of adjustment.Results: Latent profile analysis revealed four distinct groups: absence of the aloneness group (21.13%), the positive motivational solitude group (29.01%), the negative motivational solitude group (38.03%), and the activity-oriented solitude group (11.83%). Differences emerged among these four groups in terms of loneliness, depressive symptoms, and basic needs satisfaction, with adolescents in the negative motivational solitude group facing the most risk of psychological maladjustment.Conclusion: Findings revealed the possible heterogeneous nature of solitude among Chinese late adolescents and provided a theoretical basis for further understanding of adolescents' solitary state

    On the Out of Distribution Robustness of Foundation Models in Medical Image Segmentation

    Full text link
    Constructing a robust model that can effectively generalize to test samples under distribution shifts remains a significant challenge in the field of medical imaging. The foundational models for vision and language, pre-trained on extensive sets of natural image and text data, have emerged as a promising approach. It showcases impressive learning abilities across different tasks with the need for only a limited amount of annotated samples. While numerous techniques have focused on developing better fine-tuning strategies to adapt these models for specific domains, we instead examine their robustness to domain shifts in the medical image segmentation task. To this end, we compare the generalization performance to unseen domains of various pre-trained models after being fine-tuned on the same in-distribution dataset and show that foundation-based models enjoy better robustness than other architectures. From here, we further developed a new Bayesian uncertainty estimation for frozen models and used them as an indicator to characterize the model's performance on out-of-distribution (OOD) data, proving particularly beneficial for real-world applications. Our experiments not only reveal the limitations of current indicators like accuracy on the line or agreement on the line commonly used in natural image applications but also emphasize the promise of the introduced Bayesian uncertainty. Specifically, lower uncertainty predictions usually tend to higher out-of-distribution (OOD) performance.Comment: Advances in Neural Information Processing Systems (NeurIPS) 2023, Workshop on robustness of zero/few-shot learning in foundation model

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions
    • …
    corecore