742 research outputs found

    Interplay of Kerr and Raman beam cleaning with a multimode microstructure fiber

    Full text link
    We experimentally study the competition between Kerr beam self-cleaning and Raman beam cleanup in a multimode air-silica microstructure optical fiber. Kerr beam self-cleaning of the pump is observed for a certain range of input powers only. Raman Stokes beam generation and cleanup lead to both depletion and degradation of beam quality for the pump. The interplay of modal four-wave mixing and Raman scattering in the infrared domain lead to the generation of a multimode supercontinuum ranging from 500 nm up to 1800 nm

    Ge-Doped microstructured multicorefiber for customizable supercontinuum generation

    Get PDF
    Supercontinuum generation in a multicore fiber in which several uncoupled cores were doped with dissimilar concentrations of germanium was studied experimentally. Germanium doping provided control over the separation between the zero-dispersion wavelength and the 1064-nm wavelength of a Q-switched Nd:YAG pump laser. Supercontinua generated independently in each core of the same piece of fiber displayed clear and repeatable differences due to the influence of germanium doping on refractive index and four-wave mixing. The spectral evolution of the subnanosecond pump pulses injected into the different cores was accurately reproduced by numerical simulations

    Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration

    Get PDF
    We experimentally and numerically investigated the impact of input pump pulse duration on the near-infrared bandwidth of supercontinuum generation in a photonic crystal fiber. We continuously stretched the temporal duration of the input pump laser (centered at 1030 nm) pulses from 500 fs up to 10 ps, while keeping fixed the pump peak power. We observed that the long-wavelength edge of the supercontinuum spectrum is increased by 200 nm as the pump pulse duration grows from 500 fs to 10 ps. We provide a quantitative fit of the experimental results by means of numerical simulations. Moreover, we have explained the observed spectral broadening enhancement induced by pump pulse energy by developing an approximate yet fully analytical model for soliton energy exchange through a series of collisions in the presence of stimulated Raman scattering

    Fungal aneurism of the right posterior inferior cerebellar artery (PICA)

    Get PDF
    In this case-report, the Authors show the case of a sudden death occurred in a 38-year-old woman submitted to surgical excision of a right acoustic neurinoma. At the autopsy, was detected a cerebral hemorrhage with multifocal localization by a ruptured rare fungal aneurysm of the Posterior Inferior Cerebellar Arthery (PICA). The PCR analysis, carried out on formalin-fixed paraffin-embedded tissue, identified the Aspergillus Penicillioides as the involved pathogen. We discuss the main points of infectious aneurysms, being a potential neurosurgical complication

    Screen-Printed Biosensors for the Early Detection of Biomarkers Related to Alzheimer Disease: Preliminary Results

    Get PDF
    Abstract Alzheimer disease (AD), despite representing the most common type of dementia in elderly, is still lacking reliable methodologies for early diagnosis. A potential biomarker associated to AD development has been recently identified in the open isoform of p53, redox sensitive protein, currently quantified using a specific blood-based enzyme-linked immunosorbent assay (ELISA). In order to overcome ELISA limitations (level of detection, standardization and reliability), this study aimed to realize a low cost highly sensitive portable point-of-care (PoC) testing system based on screen printed electrochemical sensors (SPES). The study specifically reported the design of the platform, including the sensing probe and the electronic circuit devoted to the conditioning of the electric signal. Preliminary results were obtained from circuit testing by using controlled concentrations of electrolytic solutions and from an initial calibration stage by using Anodic Stripping Voltammetry (ASV) measurements. Future works will address the quantification of unknown concentration of unfolded p53 in peripheral blood samples, thus to validate the here-presented low cost, easy to use and highly precise platform

    Ge-Doped microstructured multicorefiber for customizable supercontinuum generation

    Get PDF
    Supercontinuum generation in a multicore fiber in which several uncoupled cores were doped with dissimilar concentrations of germanium was studied experimentally. Germanium doping provided control over the separation between the zero-dispersion wavelength and the 1064-nm wavelength of a Q-switched Nd:YAG pump laser. Supercontinua generated independently in each core of the same piece of fiber displayed clear and repeatable differences due to the influence of germanium doping on refractive index and four-wave mixing. The spectral evolution of the subnanosecond pump pulses injected into the different cores was accurately reproduced by numerical simulations

    Spatio-temporal beam dynamics in multimode nonlinear optical fibers

    Get PDF
    ABSTRACT We overview recent advances in the spatio-temporal nonlinear dynamics of optical pulses propagating in multimode optical fibers. The Kerr effect leads to spatial beam self-cleaning in a graded-index multimode optical fiber, followed by sideband series generation spanning multiple octaves. Effectively single mode supercontinuum spanning from the visible to the mid-infrared was also demonstrated. Enhancement of Kerr beam self-cleaning was observed in active fiber with quasi-step index profile. Moreover, mutual self-cleaning was recently reported for both the fundamental and the second harmonic beams in optically poled multimode fibers with cubic and quadratic nonlinearity

    Spatiotemporal Characterization of Supercontinuum Extending from the Visible to the Mid-Infrared in Multimode Graded-Index Optical Fiber

    Get PDF
    We experimentally demonstrate that pumping a graded-index multimode fiber with sub-ns pulses from a microchip Nd:YAG laser leads to spectrally flat supercontinuum generation with a uniform bell-shaped spatial beam profile extending from the visible to the mid-infrared at 2500\,nm. We study the development of the supercontinuum along the multimode fiber by the cut-back method, which permits us to analyze the competition between the Kerr-induced geometric parametric instability and stimulated Raman scattering. We also performed a spectrally resolved temporal analysis of the supercontinuum emission.Comment: 5 pages 7 figure
    • …
    corecore