61 research outputs found

    Metal/organic/metal bistable memory devices

    Full text link
    We report a bistable organic memory made of a single organic layer embedded between two electrodes, we compare to the organic/metal nanoparticle/organic tri-layers device [L.P. Ma, J. Liu, and Y. Yang, Appl. Phys. Lett. 80, 2997 (2002)]. We demonstrate that the two devices exhibit similar temperature-dependent behaviors, a thermally-activated behavior in their low conductive state (off-state) and a slightly "metallic" behavior in their high conductive state (on-state). This feature emphasizes a similar origin for the memory effect. Owing to their similar behavior, the one layer memory is advantageous in terms of fabrication cost and simplicity

    Effect of argon ion energy on the performance of silicon nitridemultilayer permeation barriers grown by hot-wire CVD on polymers

    Get PDF
    One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support.Permeation barriers for organic electronic devices on polymer flexible substrates were realized by combining stacked silicon nitride (SiNx) single layers (50 nm thick) deposited by hot-wire chemical vapor deposition process at low-temperature (~100°C) with a specific argon plasma treatment between two successive layers. Several plasma parameters (RF power density, pressure, treatment duration) as well as the number of single layers have been explored in order to improve the quality of permeation barriers deposited on polyethylene terephthalate. In this work, maximumion energy was highlighted as the crucial parameter making it possible to minimize water vapor transmission rate (WVTR), as determined by the electrical calcium test method, all the other parameters being kept fixed. Thus fixing the plasma treatment duration at 8 min for a stack of two SiNx single layers, a minimum WVTR of 5 × 10−4 g/(m2 day), measured at room temperature, was found for a maximum ion energy of ~30 eV. This minimum WVTR value was reduced to 7 × 10−5 g/(m2 day) for a stack of five SiNx single layers. The reduction in the permeability is interpreted as due to the rearrangement of atoms at the interfaces when average transferred ion energy to target atoms exceeds threshold displacement energy.The authors are grateful to Dr. R. Cortes (PMC, Ecole Polytechnique) for XRR analysis, to Dr. P. Chapon (HORIBA Jobin Yvon) for GD-OES analysis and Dr. J. Leroy (CEA Saclay) for XPS analysis. This work was partly supported by the PICS (FrenchPortuguese) project No. 5336. One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support

    All solution-processed organic photocathodes with increased efficiency and stability via the tuning of the hole-extracting layer †

    Get PDF
    International audiencePhotoelectrodes based on solution-processed organic semiconductors are emerging as low-cost alternatives to crystalline semiconductors and platinum. In this work, the performance and stability of P3HT:PCBM\MoS 3-based photocathodes are considerably improved by changing the hole-extracting layer (HEL). Oxides such as reduced graphene oxide, nickel oxide or molybdenum oxide are deposited via solution processes. With MoO x , a photocurrent density of 2 mA cm À2 during 1 h is obtained with the processing temperature lower than 150 C – thus compatible with flexible substrates. Furthermore, we show that the performances are directly correlated with the work function of the HEL material, and the comparison with solid-state solar cells shows that efficient HELs are not the same for the two types of devices

    Red-emitting fluorescent Organic Light emitting Diodes with low sensitivity to self-quenching

    No full text
    International audienceConcentration quenching is a major impediment to efficient organic light-emitting devices. We herein report on Organic Light-Emitting Diodes (OLEDs) based on a fluorescent amorphous red-emitting starbust triarylamine molecule (4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene, named FVIN), exhibiting a very small sensitivity to concentration quenching. OLEDs are fabricated with various doping levels of FVIN into Alq3, and show a remarkably stable external quantum efficiency of 1.5% for doping rates ranging from 5% up to 40%, which strongly relaxes the technological constraints on the doping accuracy. An efficiency of 1% is obtained for a pure undoped active region, along with deep red emission (x=0.6; y=0.35 CIE coordinates). A comparison of FVIN with the archetypal DCM dye is presented in an identical multilayer OLED structure

    The effect of argon plasma treatment on the permeation barrier properties of silicon nitride layers

    Get PDF
    In this work we produce and study silicon nitride (SiNx) thin films deposited by Hot Wire Chemical Vapor Depo- sition (HW-CVD) to be used as encapsulation barriers for flexible organic photovoltaic cells fabricated on poly- ethylene terephthalate (PET) substrates in order to increase their shelf lifetime. We report on the results of SiNx double-layers and on the equivalent double-layer stack where an Ar-plasma surface treatment was performed on the first SiNx layer. The Ar-plasma treatment may under certain conditions influences the structure of the interface between the two subsequent layers and thus the barrier properties of the whole system. We focus our attention on the effect of plasma treatment time on the final barrier properties. We assess the encapsulation barrier properties of these layers, using the calcium degradation test where changes in the electrical conductance of encapsulated Ca sensors are monitored with time. The water vapor transmission rate (WVTR) is found to be ~3 × 10−3 g/m2·day for stacked SiNx double-layer with 8 min Ar plasma surface treatment.FCT - CNRS PICS (French–Portuguese no: 5336) projectDirection des Relations Extérieures, Ecole Polytechniqu

    Aspirin and some other nonsteroidal anti-inflammatory drugs inhibit cystic fibrosis transmembrane conductance regulator protein gene expression in T-84 cells.

    Get PDF
    Cystic fibrosis (CF) is caused by mutations in the CF gene, which encodes CF transmembrane conductance regulator protein (CFTR), a transmembrane protein that acts as a cAMP-regulated chloride channel The disease is characterized by inflammation but the relationship between inflammation, abnormal transepithelial ion transport, and the clinical manifestations of CF are uncertain. The present study was undertaken to determine whether three nonsteroidal anti-inflammatory drugs (NSAIDs) (aspirin, ibuprofen, and indomethacin) modulate CFTR gene expression in T-84 cells. Treatment with NSAIDs reduced CFTR transcripts, and decreased cAMP-stimulated anion fluxes, an index of CFTR function. However, the two phenomena occurred at different concentrations of both drugs. The results indicate that NSAIDs can regulate both CFTR gene expression and the function of CFTR-related chloride transport, and suggest that NSAIDs act via multiple transduction pathways

    Thiophene vs thiazole: Effect of the π-connector on the properties of phthalimide end-capped diketopyrrolopyrrole based molecular acceptors for organic photovoltaics

    Get PDF
    Two phthalimide end-capped diketopyrrolopyrrole based non-fullerene derivatives distinguished by the nature of the π-conjugated connector namely a thiophene or a thiazole ring were synthesized via direct arylation and evaluated as electron acceptor materials in air-processed inverted organic solar cells. It turns out that this simple chemical modification significantly impacts the energetics, the charge transport properties and consequently the photovoltaic performances

    Benzofuran-fused Phosphole: Synthesis, Electronic, and Electroluminescence Properties

    Get PDF
    International audienceA synthetic route to novel benzofuran-fused phosphole derivatives 3-5 is described. These compounds showed optical and electrochemical properties that differ from their benzothiophene analog. Preliminary results show that 4 can be used as an emitter in OLEDs, illustrating the potential of these new compounds for opto-electronic applications
    corecore