139 research outputs found

    Modeling a Cortical Auxin Maximum for Nodulation: Different Signatures of Potential Strategies

    Get PDF
    Lateral organ formation from plant roots typically requires the de novo creation of a meristem, initiated at the location of a localized auxin maximum. Legume roots can form both root nodules and lateral roots. From the basic principles of auxin transport and metabolism only a few mechanisms can be inferred for increasing the local auxin concentration: increased influx, decreased efflux, and (increased) local production. Using computer simulations we investigate the different spatio-temporal patterns resulting from each of these mechanisms in the context of a root model of a generalized legume. We apply all mechanisms to the same group of preselected cells, dubbed the controlled area. We find that each mechanism leaves its own characteristic signature. Local production by itself can not create a strong auxin maximum. An increase of influx, as is observed in lateral root formation, can result in an auxin maximum that is spatially more confined than the controlled area. A decrease of efflux on the other hand leads to a broad maximum, which is more similar to what is observed for nodule primordia. With our prime interest in nodulation, we further investigate the dynamics following a decrease of efflux. We find that with a homogeneous change in the whole cortex, the first auxin accumulation is observed in the inner cortex. The steady state lateral location of this efflux reduced auxin maximum can be shifted by slight changes in the ratio of central to peripheral efflux carriers. We discuss the implications of this finding in the context of determinate and indeterminate nodules, which originate from different cortical positions. The patterns we have found are robust under disruption of the (artificial) tissue layout. The same patterns are therefore likely to occur in many other contexts

    Biology by Numbers—Introducing Quantitation into Life Science Education

    Get PDF
    An online educational module introduces students to concepts of quantitation and numerical simulations in developmental biolog

    Compact tomato seedlings and plants upon overexpression of a tomato chromatin remodelling ATPase gene

    Get PDF
    Control of plant growth is an important aspect of crop productivity and yield in agriculture. Overexpression of the AtCHR12/23 genes in Arabidopsis thaliana reduced growth habit without other morphological changes. These two genes encode Snf2 chromatin remodelling ATPases. Here, we translate this approach to the horticultural crop tomato (Solanum lycopersicum). We identified and cloned the single tomato ortholog of the two Arabidopsis Snf2 genes, designated SlCHR1. Transgenic tomato plants (cv. Micro-Tom) that constitutively overexpress the coding sequence of SlCHR1 show reduced growth in all developmental stages of tomato. This confirms that SlCHR1 combines the functions of both Arabidopsis genes in tomato. Compared to the wild type, the transgenic seedlings of tomato have significantly shorter roots, hypocotyls and reduced cotyledon size. Transgenic plants have a much more compact growth habit with markedly reduced plant height, severely compacted reproductive structures with smaller flowers and smaller fruits. The results indicate that either GMO-based or non-GMO-based approaches to modulate the expression of chromatin remodelling ATPase genes could develop into methods to control plant growth, for example to replace the use of chemical growth retardants. This approach is likely to be applicable and attractive for any crop for which growth habit reduction has added value

    Re-evaluation of phytohormone-independent division of tobacco protoplast-derived cells

    Get PDF
    We have used a [3H] thymidine incorporation assay and microscopic observation in order to reassess recently published data dealing with the response of tobacco protoplasts to phytohormones, lipochitooligosaccharides and peptides (Harling et al., 1997; Hayashi et al., 1992; Miklashevichs et al., 1996; Miklashevichs et al., 1997; Rohrig et al., 1995; Rohrig et al., 1996; van de Sande et al., 1996; Walden et al., 1994). These proliferation assays reveal that, in contrast to published data, isolated cells of the investigated mutant plant lines axi159 (Hayashi et al., 1992; Walden et al., 1994), axi4/1 (Harling et al., 1997) and cyil (Miklashevichs et al., 1997), which were generated by activation T-DNA tagging, were unable to grow in the absence of auxin or cytokinin. Furthermore, lipochitooligosaccharides which play a key role in the induction of nodules on roots of legumes were unable to promote auxin- or cytokinin-independent cell division in tobacco protoplasts as claimed by Rohrig et al. (1995, 1996). The finding of van de Sande et al. (1996) that ENOD40 confers tolerance of high auxin concentration to wild-type tobacco protoplasts was also reinvestigated. The results of our investigations show that we were unable to reproduce the proliferation data presented in this study, which were obtained by counting tobacco protoplast-derived cells undergoing division. In total, none of the published data on phytohormone-independent division of tobacco cells could be reproduced.Peer reviewe

    Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus

    Get PDF
    Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya
    corecore