947 research outputs found
Priming with Vitamin U Enhances Cold Tolerance of Lettuce (Lactuca sativa L.)
Priming may be an efficient pre-treatment of plants in order to enhance their ability to cope with unfavourable growth conditions, and to improve defensive metabolism through elevated levels of protective substances which may also act as health-promoting agents upon human consumption. The aim of this work was to evaluate the beneficial influence of priming with the naturally occurring, but scarcely known vitamin U (S-methylmethionine) on cold stress tolerance of lettuce (the frequently grown ‘May King’ cultivar). Effects on germination, photosynthetic efficiency, as well as on health-promoting carotenoid and vitamin C contents were investigated. Photosynthetic capacity, strongly related to productivity, was evaluated with parameters of induced chlorophyll fluorescence and of leaf gas exchange through stomata, using plants grown in hydroponic cultures. Priming with vitamin U significantly compensated for the delaying effect of low temperature (5 °C) on seed germination, as well as for inhibition of light-converting photochemical reactions and of carbon dioxide assimilation by cold stress. Use of vitamin U to prime lettuce plantlets for low temperature stress resulted in an elevated content of carotenoid pigments and of vitamin C in leaves, which improve the quality of consumed lettuce with respect to the health-promoting capacity. This beneficial influence of vitamin U was not proportional with its concentration (2 mM had no stronger effects than 0.25 mM), so small amounts of this substance were sufficient for a sustained efficiency in promoting hardening against chilling temperatures. This is the first report on priming of lettuce for cold tolerance by using S-methylmethionine (vitamin U), with a possible application in improvement of crop quality and productivity
Interpretation of three-dimensional structure from two-dimensional endovascular images: implications for educators in vascular surgery
AbstractPurposeEndovascular therapy has had a major effect on vascular surgery; surgeons perform tasks in three dimensions (3D) while viewing two-dimensional (2D) displays. This fundamental change in how surgeons perform operations has educational implications related to learning curves and patient safety. We studied the effects of experience, training, and visual-spatial ability on 3D perception of 2D angiographic images of abdominal aortic aneurysms (AAA).MethodsA novel computer-based method was developed to produce 3D depth maps based on subjects' interpretations of 2D images. Seven experts (certified vascular surgeons) and 20 novices (medical or surgical trainees) were presented with a 2D AAA angiographic image. With software specifically designed for this study, a depth map representing each subject's 3D interpretation of the 2D angiogram was produced. The novices were then randomized into a control group and a treatment group, who received a 5-minute AAA anatomy educational session. All subjects repeated the exercise on a second AAA image. Finally, all novices were given tests of visual-spatial ability, including the Surface Development Test and the Mental Rotations Test. Comparisons between experts and novices were made with depth map comparison, a subject's perception of overall object contour.ResultsThe depth maps were significantly different (depth map comparison, P < .001) between the expert and both novice groups for the first image. After the educational intervention, the control group and the treatment group exhibited significantly different depth maps (depth map comparison, P < .001), with treatment group depth maps more similar to those of the expert group. There were no significant correlations between the visual-spatial tests and the novice depth map comparison with the expert group.ConclusionsThis is the first study to examine perception of endovascular images in an educational context. Perception of overall surface contour of 3D structures from 2D angiographic images is affected by experience and training. With application of methods of vision science to an important problem in surgery, this research represents a first step in understanding the nature of visual perceptual processes involved in execution of an increasingly common clinical task. These results have implications for understanding and studying the endovascular learning curve.Clinical relevanceThis research represents a unique collaboration in an effort to understand and solve one of the greatest problems facing surgical educators and surgeons. This research uses applied tools in vision science to understand the perceptual constraints involved in minimally invasive surgery. Specifically, we examined the mental three-dimensional maps experts use when viewing two-dimensional displays. Furthermore, we compared experts with novices in an effort to assist surgical trainees
Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway
The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al
Magnetic iron oxide nanoparticles as MRI contrast agents - a comprehensive physical and theoretical study
Magnetite nanoparticles, especially superparamagnetic iron oxide nanoparticles, are established contrast agents for magnetic resonance imaging. Magnetosomes, which are
magnetite nanoparticles of biological origin, have been shown to have better contrast properties than current formulations possibly because of their larger size and high monodispersity. Here, we present an integrated study of magnetosomes and synthetic magnetite nanoparticles of varying size, hence, magnetic properties. We investigate not only the relaxation times as a measure for the contrast properties of these particles, but also their cytotoxicity and demonstrate the higher contrast of the larger particles. A theoretical model is presented that enables us to simulate the R2=R1 ratio of a contrast agent and con�rm that larger particles offer higher contrast. The results from this study
illustrate the possibility to obtain colloidal stability of large magnetic nanoparticles for magnetic resonance imaging applications and serve as an impetus for a more quantitative
description of the contrast effect as a function of the size
Polycation-Ï€ Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family
Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al
Predicting phase equilibria in polydisperse systems
Many materials containing colloids or polymers are polydisperse: They
comprise particles with properties (such as particle diameter, charge, or
polymer chain length) that depend continuously on one or several parameters.
This review focusses on the theoretical prediction of phase equilibria in
polydisperse systems; the presence of an effectively infinite number of
distinguishable particle species makes this a highly nontrivial task. I first
describe qualitatively some of the novel features of polydisperse phase
behaviour, and outline a theoretical framework within which they can be
explored. Current techniques for predicting polydisperse phase equilibria are
then reviewed. I also discuss applications to some simple model systems
including homopolymers and random copolymers, spherical colloids and
colloid-polymer mixtures, and liquid crystals formed from rod- and plate-like
colloidal particles; the results surveyed give an idea of the rich
phenomenology of polydisperse phase behaviour. Extensions to the study of
polydispersity effects on interfacial behaviour and phase separation kinetics
are outlined briefly.Comment: 48 pages, invited topical review for Journal of Physics: Condensed
Matter; uses Institute of Physics style file iopart.cls (included
Self-assembly of Microcapsules via Colloidal Bond Hybridization and Anisotropy
Particles with directional interactions are promising building blocks for new
functional materials and may serve as models for biological structures.
Mutually attractive nanoparticles that are deformable due to flexible surface
groups, for example, may spontaneously order themselves into strings, sheets
and large vesicles. Furthermore, anisotropic colloids with attractive patches
can self-assemble into open lattices and colloidal equivalents of molecules and
micelles. However, model systems that combine mutual attraction, anisotropy,
and deformability have---to the best of our knowledge---not been realized.
Here, we synthesize colloidal particles that combine these three
characteristics and obtain self-assembled microcapsules. We propose that mutual
attraction and deformability induce directional interactions via colloidal bond
hybridization. Our particles contain both mutually attractive and repulsive
surface groups that are flexible. Analogous to the simplest chemical bond,
where two isotropic orbitals hybridize into the molecular orbital of H2, these
flexible groups redistribute upon binding. Via colloidal bond hybridization,
isotropic spheres self-assemble into planar monolayers, while anisotropic
snowman-like particles self-assemble into hollow monolayer microcapsules. A
modest change of the building blocks thus results in a significant leap in the
complexity of the self-assembled structures. In other words, these relatively
simple building blocks self-assemble into dramatically more complex structures
than similar particles that are isotropic or non-deformable
Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer’s disease, Parkinson’s disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood–brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population
Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank
In the template-assistance model, normal prion protein (PrPC), the pathogenic
cause of prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine
Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to
infectious prion (PrPSc) through an autocatalytic process triggered by a
transient interaction between PrPC and PrPSc. Conventional studies suggest the
S1-H1-S2 region in PrPC to be the template of S1-S2 -sheet in PrPSc, and
the conformational conversion of PrPC into PrPSc may involve an unfolding of H1
in PrPC and its refolding into the -sheet in PrPSc. Here we conduct a
series of simulation experiments to test the idea of transient interaction of
the template-assistance model. We find that the integrity of H1 in PrPC is
vulnerable to a transient interaction that alters the native dihedral angles at
residue Asn, which connects the S1 flank to H1, but not to interactions
that alter the internal structure of the S1 flank, nor to those that alter the
relative orientation between H1 and the S2 flank.Comment: A major revision on statistical analysis method has been made. The
paper now has 23 pages, 11 figures. This work was presented at 2006 APS March
meeting session K29.0004 at Baltimore, MD, USA 3/13-17, 2006. This paper has
been accepted for pubcliation in European Biophysical Journal on Feb 2, 200
- …