274 research outputs found

    High energy cosmic rays, gamma rays and neutrinos from AGN

    Full text link
    The author reviews a model for the emission of high energy cosmic rays, gamma-rays and neutrinos from AGN (Active Galactic Nuclei) that he has proposed since 1985. Further discussion of the knee energy phenomenon of the cosmic ray energy spectrum requires the existence of a heavy particle with mass in the knee energy range. A possible method of detecting such a particle in the Pierre Auger Project is suggested. Also presented is a relation between the spectra of neutrinos and gamma-rays emitted from AGN. This relation can be tested by high energy neutrino detectors such as ICECUBE, the Mediterranean Sea Detector and possibly by the Pierre Auger Project.Comment: 4 pages, no figure

    Two components of dark matter in the DAMA data

    Full text link
    It is shown that the DAMA data indicate two dark matter components, one that circulates around the galactic center (GC) and another that is emitted from the GC. From the location of the maximum yearly variation, one can compute the ratio of the two components.Comment: 4 pages, no figur

    Interplay of the Chiral and Large N_c Limits in pi N Scattering

    Get PDF
    Light-quark hadronic physics admits two useful systematic expansions, the chiral and 1/N_c expansions. Their respective limits do not commute, making such cases where both expansions may be considered to be especially interesting. We first study pi N scattering lengths, showing that (as expected for such soft-pion quantities) the chiral expansion converges more rapidly than the 1/N_c expansion, although the latter nevertheless continues to hold. We also study the Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules of pi N scattering, finding that both fail if the large N_c limit is taken prior to the chiral limit.Comment: 10 pages, ReVTe

    On relativistic approaches to the pion self-energy in nuclear matter

    Full text link
    We argue that, in contrast to the non-relativistic approach, a relativistic evaluation of the nucleon--hole and delta-isobar--nucleon hole contributions to the pion self-energy incorporates the s-wave scattering, which requires a more accurate evaluation. Therefore relativistic approach containing only these diagrams does not describe appropriately the pion self-energy in isospin symmetric nuclear matter. We conclude that, a correct relativistic approach to the pion self-energy should involve a more sophisticated calculation in order to satisfy the known experimental results on the near-threshold behaviour of the pion-nucleon (forward) scattering amplitude.Comment: 7 pages,1 figur

    Characterization of the glass transition in vitreous silica by temperature scanning small-angle X-ray scattering

    Full text link
    The temperature dependence of the x-ray scattering in the region below the first sharp diffraction peak was measured for silica glasses with low and high OH content (GE-124 and Corning 7980). Data were obtained upon scanning the temperature at 10, 40 and 80 K/min between 400 K and 1820 K. The measurements resolve, for the first time, the hysteresis between heating and cooling through the glass transition for silica glass, and the data have a better signal to noise ratio than previous light scattering and differential thermal analysis data. For the glass with the higher hydroxyl concentration the glass transition is broader and at a lower temperature. Fits of the data to the Adam-Gibbs-Fulcher equation provide updated kinetic parameters for this very strong glass. The temperature derivative of the observed X-ray scattering matches that of light scattering to within 14%.Comment: EurophysicsLetters, in pres

    Relativistic O(q4)O(q^4) two-pion exchange nucleon-nucleon potential: configuration space

    Full text link
    We have recently performed a relativistic O(q4)O(q^4) chiral expansion of the two-pion exchange NNNN potential, and here we explore its configuration space content. Interactions are determined by three families of diagrams, two of which involve just gAg_A and fπf_{\pi}, whereas the third one depends on empirical coefficients fixed by subthreshold πN\pi N data. In this sense, the calculation has no adjusted parameters and gives rise to predictions, which are tested against phenomenological potentials. The dynamical structure of the eight leading non-relativistic components of the interaction is investigated and, in most cases, found to be clearly dominated by a well defined class of diagrams. In particular, the central isovector and spin-orbit, spin-spin, and tensor isoscalar terms are almost completely fixed by just gAg_A and fπf_{\pi}. The convergence of the chiral series in powers of the ratio (pion mass/nucleon mass) is studied as a function of the internucleon distance and, for r>r> 1 fm, found to be adequate for most components of the potential. An important exception is the dominant central isoscalar term, where the convergence is evident only for r>r> 2.5 fm. Finally, we compare the spatial behavior of the functions that enter the relativistic and heavy baryon formulations of the interaction and find that, in the region of physical interest, they differ by about 5%.Comment: 27 pages, 33 figure

    Quasinormal distributions and expansion at the mode

    Full text link
    The Gram-Charlier series of type A is discussed in terms of deviants which are related to moments in a way similar to the way Hermite polynomials are related to the powers. Distribution functions are also expressed in terms of the mode and moments (cumulants or deviants), which are useful expansions when the distributions are approximately normal. It is shown that such expansions as well as the Gram-Charlier series are valid asymptotically for discrete distributions defined on the semiinfinite interval [0, ∞].Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45129/1/10955_2005_Article_BF01010217.pd

    The in-medium isovector pi N amplitude from low energy pion scattering

    Full text link
    Differential cross sections for elastic scattering of 21.5 MeV positive and negative pions by Si, Ca, Ni and Zr have been measured as part of a study of the pion-nucleus potential across threshold. The `anomalous' repulsion in the s-wave term was observed, as is the case with pionic atoms. The extra repulsion can be accounted for by a chiral-motivated model where the pion decay constant is modified in the medium. Unlike in pionic atoms, the anomaly cannot be removed by merely introducing an empirical on-shell energy dependence.Comment: 9 pages, 2 figures. Minor changes, to appear in PR

    Elastic scattering of low energy pions by nuclei and the in-medium isovector pi N amplitude

    Full text link
    Measurements of elastic scattering of 21.5 MeV pi+ and pi- by Si, Ca, Ni and Zr were made using a single arm magnetic spectrometer. Absolute calibration was made by parallel measurements of Coulomb scattering of muons. Parameters of a pion-nucleus optical potential were obtained from fits to all eight angular distributions put together. The `anomalous' s-wave repulsion known from pionic atoms is clearly observed and could be removed by introducing a chiral-motivated density dependence of the isovector scattering amplitude, which also greatly improved the fits to the data. The empirical energy dependence of the isoscalar amplitude also improves the fits to the data but, contrary to what is found with pionic atoms, on its own is incapable of removing the anomaly.Comment: 20 pages, 5 figures, 5 tables. V2 added details on uncertainties,extended discussion. To appear in PR

    Quantitative AFM analysis of phase separated borosilicate glass surfaces

    Full text link
    Phase separated borosilicate glass samples were prepared by applying various heat treatments. Using selective chemical etching we performed AFM measurement on the phase separated glass surfaces. A quantitative roughness analysis allowed us to measure precisely the dependence of the characteristic size of the phase domains on heating time and temperature. The experimental measurements are very well described by the theoretically expected scaling laws. Interdiffusion coefficients and activation energy are estimated from this analysis and are consistent with literature data
    • 

    corecore