53 research outputs found

    A New Multi-Energy Neutrino Radiation-Hydrodynamics Code in Full General Relativity and Its Application to Gravitational Collapse of Massive Stars

    Get PDF
    We present a new multi-dimensional radiation-hydrodynamics code for massive stellar core-collapse in full general relativity (GR). Employing an M1 analytical closure scheme, we solve spectral neutrino transport of the radiation energy and momentum based on a truncated moment formalism. Regarding neutrino opacities, we take into account a baseline set in state-of-the-art simulations, in which inelastic neutrinoelectron scattering, thermal neutrino production via pair annihilation and nucleonnucleon bremsstrahlung are included. While the Einstein field equations and the spatial advection terms in the radiation-hydrodynamics equations are evolved explicitly, the source terms due to neutrino-matter interactions and energy shift in the radiation moment equations are integrated implicitly by an iteration method. To verify our code, we first perform a series of standard radiation tests with analytical solutions that include the check of gravitational redshift and Doppler shift. A good agreement in these tests supports the reliability of the GR multi-energy neutrino transport scheme. We then conduct several test simulations of core-collapse, bounce, and shock-stall of a 15Msun star in the Cartesian coordinates and make a detailed comparison with published results. Our code performs quite well to reproduce the results of full-Boltzmann neutrino transport especially before bounce. In the postbounce phase, our code basically performs well, however, there are several differences that are most likely to come from the insufficient spatial resolution in our current 3D-GR models. For clarifying the resolution dependence and extending the code comparison in the late postbounce phase, we discuss that next-generation Exaflops-class supercomputers are at least needed.Comment: 61 pages, 20 figures, accepted for publication in ApJ

    A New Gravitational-Wave Signature from Standing Accretion Shock Instabilities in Supernovae

    Get PDF
    We present results from fully relativistic three-dimensional core-collapse supernova (CCSN) simulations of a non-rotating 15 Msun star using three different nuclear equations of state (EoSs). From our simulations covering up to ~350 ms after bounce, we show that the development of the standing accretion shock instability (SASI) differs significantly depending on the stiffness of nuclear EoS. Generally, the SASI activity occurs more vigorously in models with softer EoS. By evaluating the gravitational-wave (GW) emission, we find a new GW signature on top of the previously identified one, in which the typical GW frequency increases with time due to an accumulating accretion to the proto-neutron star (PNS). The newly observed quasi-periodic signal appears in the frequency range from ~100 to 200 Hz and persists for ~150 ms before neutrino-driven convection dominates over the SASI. By analyzing the cycle frequency of the SASI sloshing and spiral modes as well as the mass accretion rate to the emission region, we show that the SASI frequency is correlated with the GW frequency. This is because the SASI-induced temporary perturbed mass accretion strike the PNS surface, leading to the quasi-periodic GW emission. Our results show that the GW signal, which could be a smoking-gun signature of the SASI, is within the detection limits of LIGO, advanced Virgo, and KAGRA for Galactic events.Comment: 7 pages, 5 figures, Accepted for publication in ApJ

    Probing mass-radius relation of protoneutron stars from gravitational-wave asteroseismology

    Get PDF
    The gravitational-wave (GW) asteroseismology is a powerful technique for extracting interior information of compact objects. In this work, we focus on spacetime modes, the so-called ww-modes, of GWs emitted from a proto-neutron star (PNS) in the postbounce phase of core-collapse supernovae. Using results from recent three-dimensional supernova models, we study how to infer the properties of the PNS based on a quasi-normal mode analysis in the context of the GW asteroseismology. We find that the w1w_1-mode frequency multiplied by the PNS radius is expressed as a linear function with respect to the ratio of the PNS mass to the PNS radius. This relation is insensitive to the nuclear equation of state (EOS) employed in this work. Combining with another universal relation of the ff-mode oscillations, we point out that the time dependent mass-radius relation of the PNS can be obtained by observing both the ff- and w1w_1-mode GWs simultaneously. Our results suggest that the simultaneous detection of the two modes could provide a new probe into finite-temperature nuclear EOS that predominantly determines the PNS evolution.Comment: accepted for publication in PR

    Systematic Features of Axisymmetric Neutrino-Driven Core-Collapse Supernova Models in Multiple Progenitors

    Full text link
    We present an overview of two-dimensional (2D) core-collapse supernova simulations employing neutrino transport scheme by the isotropic diffusion source approximation. We study 101 solar-metallicity, 247 ultra metal-poor, and 30 zero-metal progenitors covering zero-age main sequence mass from 10.8M⊙10.8 M_{\odot} to 75.0M⊙75.0 M_{\odot} . Using the 378 progenitors in total, we systematically investigate how the differences in the structures of these multiple progenitors impact the hydrodynamics evolution. By following a long-term evolution over 1.0 s after bounce, most of the computed models exhibit neutrino-driven revival of the stalled bounce shock at ∼\sim 200 - 800 ms postbounce, leading to the possibility of explosion. Pushing the boundaries of expectations in previous one-dimensional (1D) studies, our results confirm that the compactness parameter ξ\xi that characterizes the structure of the progenitors is also a key in 2D to diagnose the properties of neutrino-driven explosions. Models with high ξ\xi undergo high ram pressure from the accreting matter onto the stalled shock, which affects the subsequent evolution of the shock expansion and the mass of the protoneutron star under the influence of neutrino-driven convection and the standing accretion-shock instability. We show that the accretion luminosity becomes higher for models with high ξ\xi, which makes the growth rate of the diagnostic explosion energy higher and the synthesized nickel mass bigger. We find that these explosion characteristics tend to show a monotonic increase as a function of the compactness parameter ξ\xi.Comment: 15 pages, 22 figures, 277 progenitors added, accepted to PAS

    Correlated Signatures of Gravitational-Wave and Neutrino Emission in Three-Dimensional General-Relativistic Core-Collapse Supernova Simulations

    Full text link
    We present results from general-relativistic (GR) three-dimensional (3D) core-collapse simulations with approximate neutrino transport for three non-rotating progenitors (11.2, 15, and 40 Msun) using different nuclear equations of state (EOSs). We find that the combination of progenitor's higher compactness at bounce and the use of softer EOS leads to stronger activity of the standing accretion shock instability (SASI). We confirm previous predications that the SASI produces characteristic time modulations both in neutrino and gravitational-wave (GW) signals. By performing a correlation analysis of the SASI-modulated neutrino and GW signals, we find that the correlation becomes highest when we take into account the time-delay effect due to the advection of material from the neutrino sphere to the proto-neutron star core surface. Our results suggest that the correlation of the neutrino and GW signals, if detected, would provide a new signature of the vigorous SASI activity in the supernova core, which can be hardly seen if neutrino-convection dominates over the SASI.Comment: 24 pages, 10 figures, Accepted for publication in Ap

    Coherent Network Analysis of Gravitational Waves from Three-Dimensional Core-Collapse Supernova Models

    Full text link
    Using predictions from three-dimensional (3D) hydrodynamics simulations of core-collapse supernovae (CCSNe), we present a coherent network analysis to detection, reconstruction, and the source localization of the gravitational-wave (GW) signals. We use the {\tt RIDGE} pipeline for the analysis, in which the network of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA is considered. By combining with a GW spectrogram analysis, we show that several important hydrodynamics features in the original waveforms persist in the waveforms of the reconstructed signals. The characteristic excess in the spectrograms originates not only from rotating core-collapse, bounce and the subsequent ring down of the proto-neutron star (PNS) as previously identified, but also from the formation of magnetohydrodynamics jets and non-axisymmetric instabilities in the vicinity of the PNS. Regarding the GW signals emitted near at the rotating core bounce, the horizon distance extends up to ∼\sim 18 kpc for the most rapidly rotating 3D model in this work. Following the rotating core bounce, the dominant source of the GW emission shifts to the non-axisymmetric instabilities. The horizon distances extend maximally up to ∼\sim 40 kpc seen from the spin axis. With an increasing number of 3D models trending towards explosion recently, our results suggest that in addition to the best studied GW signals due to rotating core-collapse and bounce, the time is ripe to consider how we can do science from GWs of CCSNe much more seriously than before. Particularly the quasi-periodic signals due to the non-axisymmetric instabilities and the detectability should deserve further investigation to elucidate the inner-working of the rapidly rotating CCSNe.Comment: PRD in pres

    A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole

    Full text link
    We study the final fate of a very massive star by performing full general relativistic (GR), three-dimensional (3D) simulation with three-flavor multi-energy neutrino transport. Utilizing a 70 solar mass zero metallicity progenitor, we self-consistently follow the radiation-hydrodynamics from the onset of gravitational core-collapse until the second collapse of the proto-neutron star (PNS), leading to black hole (BH) formation. Our results show that the BH formation occurs at a post-bounce time of ~300 ms for the 70 Msun star. This is significantly earlier than those in the literature where lower mass progenitors were employed. At a few ~10 ms before BH formation, we find that the stalled bounce shock is revived by intense neutrino heating from the very hot PNS, which is aided by violent convection behind the shock. In the context of 3D-GR core-collapse modeling with multi-energy neutrino transport, our numerical results present the first evidence to validate a fallback BH formation scenario of the 70 Msun star.Comment: 5 pages, 4 figures, accepted for publication in MNRAS lette
    • …
    corecore