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ABSTRACT

We present a new multi-dimensional radiation-hydrodynamics code for massive stellar core-collapse in full general
relativity (GR). Employing an M1 analytical closure scheme, we solve spectral neutrino transport of the radiation
energy and momentum based on a truncated moment formalism. Regarding neutrino opacities, we take into
account a baseline set in state-of-the-art simulations, in which inelastic neutrino–electron scattering, thermal
neutrino production via pair annihilation, and nucleon–nucleon bremsstrahlung are included. While the Einstein
field equations and the spatial advection terms in the radiation-hydrodynamics equations are evolved explicitly, the
source terms due to neutrino–matter interactions and energy shift in the radiation moment equations are integrated
implicitly by an iteration method. To verify our code, we first perform a series of standard radiation tests with
analytical solutions that include the check of gravitational redshift and Doppler shift. A good agreement in these
tests supports the reliability of the GR multi-energy neutrino transport scheme. We then conduct several test
simulations of core-collapse, bounce, and shock stall of a 15M star in the Cartesian coordinates and make a
detailed comparison with published results. Our code performs quite well to reproduce the results of
fullBoltzmann neutrino transport especially before bounce. In the postbounce phase, our code basically
performs well, however, there are several differences that are most likely to come from the insufficient spatial
resolution in our current 3D-GR models. For clarifying the resolution dependence and extending the code
comparison in the late postbounce phase, we discuss that next-generation Exaflopsclass supercomputers are
needed at least.

Key words: hydrodynamics – methods: numerical – neutrinos – radiation: dynamics – supernovae: general

1. INTRODUCTION

Neutrino transport is an essential ingredient for numerical
simulations to clarify the theory of thecore-collapse of massive
stars and the formation mechanisms of compact objects (see,
e.g., Janka 2012; Kotake et al. 2012b; Burrows 2013;
Mezzacappa et al. 2014; Foglizzo et al. 2015 for recent
reviews). In the collapsing iron core, neutrinos play crucial
roles in every phase; deleptonization in the core determines the
time of bounce and the mass of the proto-neutron star
(PNS;e.g., Langanke et al. 2003); the gigantic internal energy
trapped in the PNS is almost completely carried away by
neutrinos, a tiny fraction of which contributes to the heating of
the postshock material, leading to the onset of core-collapse
supernovae (CCSNe) in the context of the neutrino heating
mechanism (Bethe & Wilson 1985; Wilson 1985). Since these
SN neutrinos are generally not in both thermal and chemical
equilibrium, the distribution of neutrinos in the phase space
should be computationally determined. This is a seven-
dimensional (7D) problem(three-dimensional and one-dimen-
sional (3D+1D) in spacetime and 3D in momentum space),
which iswhy CCSN simulations are considered one of the
most challenging subjects in computational astrophysics.

Primarily due to neutrino-driven convection (e.g., Bethe
1990; Herant et al. 1994; Burrows et al. 1995; Janka & Müller
1996; Müller & Janka 1997) and the standingaccretionshock
instability (SASI, e.g., Blondin et al. 2003; Foglizzo et al.
2006, 2007, 2012; Ohnishi et al. 2006; Blondin & Mezzacappa
2007; Iwakami et al. 2008, 2009; Fernández & Thompson
2009; Guilet & Foglizzo 2012; Hanke et al. 2012; Couch 2013;

Fernández et al. 2014), the postbounce cores are essentially of
multi-dimensional (multi-D) nature.5 Due to the high compact-
ness of the PNS, these multi-D fluid motions are all under the
influence of the general relativistic (GR) gravity, the con-
sideration of which used to be standard in the pioneering era of
CCSN simulations (e.g., May & White 1966; Schwartz 1967).
In rapidly rotating supernova cores (e.g., Woosley & Bloom
2006), magnetohydrodynamics (MHD) instabilities naturally
make the core dynamics intrinsically non-spherical (e.g.,
Ardeljan et al. 2000; Kotake et al. 2004, 2006b; Obergaulinger
et al. 2006, 2014; Burrows et al. 2007; Masada et al.
2012, 2015; Sawai et al. 2013; Iwakami et al. 2014; Nakamura
et al. 2014a). All in all, in order to have the final word on the
CCSN mechanisms quantitatively, one needs to deal with the
7D Boltzmann neutrino transport simulations in full GR MHD.
Unfortunately, however, this still remains computationally very
demanding even using exa-scale computing platforms in the
next decade(s) to come (see discussions in Kotake et al.
2012a).6

Since the late 1990s, the ultimate spherically symmetric (1D)
simulations where the GR Boltzmann transport is coupled to
1D-GR hydrodynamics have been made feasible by Lieben-
dörfer et al. (2001) and Sumiyoshi et al. (2005;see
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5 Recently, multi-dimensionalities in the precollapse core (e.g., Meakin et al.
2011) are also attracting much attention (e.g., Couch & Ott 2013; Müller &
Janka 2015).
6 We here mean the feasibility of 7D-GR Boltzmann neutrino transport
simulation following ∼1 s after bounce with sufficient numerical resolutions in
both space and momentum space.
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Mezzacappa & Matzner 1989; Mezzacappa & Bruenn 1993a,
1993b, 1993c; Yamada 1997; Yamada et al. 1999; Bruenn et al.
2001; Liebendörfer et al. 2001, 2004 for the code develop-
ments). Unfortunately, however, these full-fledged 1D simula-
tions fail to produce explosions except for super-AGB stars at
the low-mass end (Kitaura et al. 2006). In the context of the full
Boltzmann calculations, Livne et al. (2004) were the first to
perform two-dimensional (2D) multi-angle (i.e., assuming
axisymmetry in both space and momentum space) neutrino
hydrodynamics simulations using the discrete ordinate (Sn)
method. Then it was demonstrated by Ott et al. (2008) that the
multi-angle transport is really important especially when the
neutrino radiation field deviates significantly from spherical
symmetry such as in the rapidly rotating cores (see also Brandt
et al. 2011). Going beyond the assumption of axisymmetry in
the multi-angle transport, Sumiyoshi & Yamada (2012) were
the first to develop the fully multi-angle Boltzmann transport
code and then apply it for static backgrounds (Sumiyoshi
et al. 2015). More recently, Nagakura et al. (2014) extended the
code to include special relativistic (SR) corrections and showed
the ability of the code by performing 1D core-collapse
simulation of a M15  model. Albeit not yet implemented in
hydrodynamics simulations, several novel formulations and
schemes of the full Boltzmann equation have recently been
reported in Cardall et al. (2013a, 2013b), Shibata et al. (2014),
and Peres et al. (2014).

At present, direct discretization of the Boltzmann transport
equation fully into the neutrino angle and energy (such as by
the Sn method mentioned above) is still computationally very
expensive. An approximation often made in previous works is
to remove the full angular dependence of the Boltzmann
equation by expanding the neutrino distribution function as a
series of moments. The simplest version, in which one closes
the moment expansion after the zeroth angular moment, is
themulti-group, flux-limited diffusion (MGFLD) scheme (e.g.,
Bruenn 1985; Livne et al. 2004; Kotake et al. 2006a; Swesty &
Myra 2009; Bruenn et al. 2013; Zhang et al. 2013). In FLD
schemes, the basic equation is a diffusion equation for the
neutrino energy density. In solving it, an appropriate flux-
limiter should be employed (e.g., Minerbo 1978; Pomraning
1981; Levermore 1984; Janka 1992) to ensure the causality of
the radiation field in the transparent regions where the diffusion
approximation breaks down. The isotropic diffusion source
approximation (IDSA) scheme developed by Liebendörfer
et al. (2009) is basically positioned at a similar approximation
level compared to the MGFLD scheme. In the IDSA, the
neutrino distribution function is divided into two components,
one which is trapped with matter and has isotropic distribution
function and the other in the free streaming limit, each of which
is solved independently, while satisfying the 1D Boltzmann
equation as a whole. Due to the high computational efficiency,
the IDSA has been extensively employed in both 2D (Suwa
et al. 2010, 2011, 2013, 2016; Nakamura et al. 2014b) and 3D
simulations (Takiwaki et al. 2012, 2014). One can also truncate
the angular moment at the second order and transport the zeroth
and first order angular moments. In this case, higher or equal to
the second order moment needs to be determined indepen-
dently to close the set oftransport equations. In the M1
moment scheme (e.g., Pons et al. 2000; Shibata et al. 2011),
one applies an analytic formula for the closure relation (see
examples applied in post-Newtonian MHD simulations (Ober-
gaulinger et al. 2014) and GR simulations in 1D (O’Connor &

Ott 2013; O’Connor 2015) and in 3D (Kuroda
et al. 2012, 2014). In contrast, one can self-consistently
determine the closure relation by the variable Eddington
factor(VEF) method (e.g., Müller et al. 2010 and see
references therein). In these cases, a model Boltzmann equation
is integrated to iteratively obtain the solution up to the higher
moments (i.e., the Eddington tensor) until the system is
converged. Currently, the multi-Dstate-of-the-artsimulations
of CCSNe aredefined by multi-group (spectral) neutrino
hydrodynamics simulations. More severe approximations
include gray transport (Fryer et al. 1999; Scheck et al. 2006)
or the lightbulb and leakage schemes (e.g., Janka & Müller
1996; Ruffert et al. 1996; Kotake et al. 2003; Rosswog &
Liebendörfer 2003; Murphy & Burrows 2008; O’Connor & Ott
2011; Perego et al. 2014), which have been often employed in
many recent studies of multi-D instabilities and the MHD
mechanism of CCSNe.
In addition to the multi-D and multi-angle/truncated

neutrino transport, the accurate treatment of GR is highly
ranked among the todo lists toward the ultimate CCSN
simulations. In most previous multi-D models with multi-group
neutrino transport, attempts to modelGR effects have been-
made by using a modified gravitational potential that takes into
account a 1D-GR effect by replacing the monopole term of
Newtonian gravity with the TOV potential (Buras et al. 2006a,
2006b; Bruenn et al. 2009; Marek & Janka 2009; Hanke
et al. 2013). While there are a number of GR core-collapse
simulations in 2D (e.g., Dimmelmeier et al. 2002; Shibata &
Sekiguchi 2004; Müller et al. 2012b) and in 3D (e.g., Shibata &
Sekiguchi 2005; Kuroda et al. 2012, 2014; Ott et al. 2012;
Mösta et al. 2014), many of them, especially in 3D, have been
made,for the sake of computational cost, to employ a
simplified microphysics such as by the Ye parametrization
scheme (Liebendörfer et al. 2005) or by the neutrino leakage
scheme (Sekiguchi 2010). In our previous study (Kuroda
et al. 2012), we performed 3D-GR/SR hydrodynamics
simulations of a M15  star with the gray M1 scheme. We
demonstrated that due to thedeeper gravitational well of GR,
the neutrino luminosity and the average neutrino energy in the
postbounce phase increase when switching from SR to GR
hydrodynamics. Since the neutrino heating rates in the
postshock regions are sensitively affected by the emergent
neutrino spectra, whether ornot the GR effect willhelp the
onset of neutrino-driven explosions needs to be investigated by
multi-D GR simulations with a more sophisticated neutrino
transport scheme.7

In this paper, we present a new 3D-GR radiation-
hydrodynamics code that is meant to apply for stellar core-
collapse simulations. The spacetime treatment is based on the
Arnowitt–Deser–Misner 3+1 formalism and we employ the
Baumgarte–Shapiro–Shibata–Nakamura (BSSN) formalism
(Shibata & Nakamura 1995; Baumgarte & Shapiro 1999) to
evolve the metric variables. The full GR radiation-hydrody-
namics equations are evolved in a conservative form, in which
we solve the energy-dependent set of radiation moments up to
the first order with the M1 moment scheme. This part is based
on the partial implementation of the Thorne’s moment

7 It is worth mentioning that 2D-GR models with the VEF method tend to
explode more easily than the corresponding 2D Newtonian models with and
without the GR correction (e.g., Müller et al. 2010, 2012b; Müller & Janka
2014). This may support the speculation that GR is helpful for the workings of
the neutrino mechanism in multi-D simulations.
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formalism (Thorne 1981), which is extended by Shibata et al.
(2011) in a more suitable manner applicable to the neutrino
transport problem. Regarding the neutrino–matter interaction
terms, we employ a baseline set of weak interactions as given
in Bruenn (1985) and Rampp & Janka (2002), where nucleon–
nucleon bremsstrahlung is additionally taken into account. Our
newly developed code is designed to evolve the Einstein field
equation together with the GR radiation hydrodynamic
equations in a self-consistent manner while satisfying the
Hamiltonian and momentum constraints. A nested structure
embedded in the 3D Cartesian computational domain enables
us to follow the dynamics starting from the onset of
gravitational collapse of a 15 Me star (Woosley & Wea-
ver 1995), through bounce, up to about ∼50 ms postbounce.
Since, it is still computationally too expensive to follow long-
term evolution in full 3D until the neutrino-driven explosion
takes place (e.g., at the earliest ∼200 ms after bounce (Bruenn
et al. 2009; Marek & Janka 2009) or ∼500 ms in 2D-GR
calculation (Müller & Janka 2014), we mainly focus on
detailed comparisons between our pseudo-1D neutrino profiles
computed in the 3D Cartesian coordinates and previous 1D
results to check the validity of our new code in the early
postbounce phase.

This paper is organized as follows. In Section 2, after we
shortly introduce the formulation of the GR transport scheme,
we describe the governing equations of hydrodynamics and
neutrino transport in detail. Some practical implementation
schemes how to satisfy important conservative quantities such
as lepton number, energy, and momentum are given in
Section 3. The main results and detailed comparisons with
previous studies are presented in Section 5. Note that
geometrized unit system is used in Sections 2 and 3, i.e., the
speed of light, the gravitational constant and the Planck
constant are set to unity: c G h 1= = = , and cgs units
areused in Section 5. Greek indices run from 0 to 3 and Latin
indicesfrom 1 to 3.

2. FORMALISM

This section starts with a brief summary of the basic equations
and the numerical schemes of GR radiationhydrodynamics.

Following our previous work (Kuroda et al. 2012), our code
consists of the following three parts, where the evolution
equations of metric, hydrodynamics,and neutrino radiation are
solved. Each of them is solved in an operator-splitting manner,
but the system evolves self-consistently as a whole, satisfying
the Hamiltonian and momentum constraints. Regarding the
metric evolution, the spatial metric ijg (in the standard (3+1)
form: ds dt2 2 2a= - + dx dt dx dt ,ij

i i j j( )( )g b b+ + with α

and ib being the lapse and shift, respectively) and its extrinsic
curvature Kij are evolved using the BSSN formulation (Shibata
& Nakamura 1995; Baumgarte & Shapiro 1999;see Kuroda
et al. 2012, 2014 for more details).

2.1. Radiation Hydrodynamics

There are major differences compared to our previous code
(Kuroda et al. 2012).On the one hand, we evolved anenergy-
integrated (“gray”) neutrino radiation field with an approximate
description of neutrino–matter interaction based on the neutrino
leakage scheme, andon the other hand we now solve the
spectral neutrino transport where the source terms are treated
self-consistently following a standard procedure of the M1

closure scheme (Shibata et al. 2011). For convenience, we
briefly summarize the basic equations of our newly developed
code in the following (see Shibata et al. 2011 and Cardall et al.
2013a for the complete derivation).
The total stress–energy tensor T total( )

ab is expressed as

T T d T , 1total fluid
, ,

,
e e x

( )( ) ( )
¯

( )ò åe= +ab ab

n n n n
n e
ab

Î

where T fluid( )
ab and T ,( )n e

ab arethe stress–energy tensor of fluid and
theenergy-dependent neutrino radiation field, respectively.
Note in the above equation, summation is taken for all species
of neutrinos ( , ,e e x¯n n n ) with xn representing heavylepton
neutrinos (i.e., ,n nm t and their anti-particles), and ε represents
neutrino energy measured in the comoving frame with the fluid.
For simplicity, the neutrino flavor index ν is omitted below.
With introducing radiation energy (E( )e ), radiation flux

F( )( )e
m ,and radiation pressure P( )( )e

mn , measured by an Eulerian
observer or (J( )e , H( )e

m and L( )e
mn) measured in a comoving frame,

T( )e
mn can be written in covariant form as

T E n n F n F n P , 2( )( ) ( ) ( ) ( ) ( )= + + +e
mn

e
m n

e
m n

e
n m

e
mn

J u u H u H u L . 3( )( ) ( ) ( ) ( )= + + +e
m n

e
m n

e
n m

e
mn

In the above equations, n 1 , k( )a b a= -m is a unit vector
orthogonal to the space-like hypersurface and um is the four
velocity of fluid. In the truncated moment formalism
(Thorne 1981; Shibata et al. 2011), one evolves radiation
energy (E( )e ) and radiation flux (F( )e

a ) in a conservative form
and P( )e

mn is determined by an analytic closure relation (e.g.,
Equation (6)). The evolution equations for E( )e and F( )e

a are
given by

E F E M n

P K F S n , 4

t i
i i

ij
ij

i
i

( ) ( ˜ )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

g g a b ga e

g a a a

¶ + ¶ - + ¶

= - ¶ -

e e e e e
m

m

e e e
m

m

and

F P F M

E F P S2 ,

5

t i j i
j j

i i

i j i
j jk

i jk i

( ) ( ˜ )

[ ( ) ]
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

g g a b ga e g

g a b a g a g

¶ + ¶ - - ¶

= - ¶ + ¶ + ¶ +

e e e e e
m

m

e e e e
m

m

respectively. Here γ is the determinant of the three metric
det ij( )g gº and S( )e

m is the source term for neutrino matter
interactions (see Appendix A for the currently implemented
processes). M̃( )e

m is defined by M M u˜( ) ( )º e
m

e
mab

b a,where M( )e
mab

denotes the third rank moment of theneutrino distribution
function (seeShibata et al. 2011 for the explicit expression).
By adopting the M1 closure scheme, the radiation pressure

can be expressed as

P P P
3 1

2

3 1

2
, 6ij ij ij

thin thick

( )
( )( )

( )
( )

( )
( )

c c
=

-
+

-
e

e
e

e
e

where ( )c e represents the variable Eddington factor, andPij
thin( )e

and Pij
thick( )e correspondto the radiation pressure in the optically

thin and thick limit, respectively. They are written in terms of
J( )e and H( )e

m (Shibata et al. 2011). Following Minerbo (1978),
Cernohorsky & Bludman (1994), and Obergaulinger & Janka
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(2011), we take the variable Eddington factor ( )c e as

F F F5 6 2 6

15
, 7

2 3 4¯ ¯ ¯
( )( )

( ) ( ) ( )c =
+ - +

e
e e e

where

F
h H H

J
. 82

2
¯ ( )( )

( ) ( )

( )
ºe

mn e
m

e
n

e

In Equation (8), h g u uº +mn mn m n is the projection operator.

As we will discuss later, by the definition of F̄( )e in Equation (8),
one can appropriately reproduce several important neutrino
behaviors, for example, neutrino trapping in the rapidly
collapsing opaque core. We iteratively solve the simultaneous
Equations (7)–(8) to find the converged solution of ( )c e .

The hydrodynamic equations are written in a conservative
form as

v 0, 9t i
i( ) ( )

* *
r r¶ + ¶ =

S S v P

S S S

e S P d S

2

2 , 10

t i j i
j

i
j

i k i
k

k
k

i

jk jk i
jk

i

0

4

( )
[

( ) ˜ ( )( )
⎤
⎦⎥ò

g g a d

g a b a f

a g g a e g

¶ + ¶ +

= - ¶ - ¶ - ¶

+ - ¶ +f
e
m

m
-

v P v

KS e S P A

S D d S n

3

, 11

t i
i i i

k
k

ij ij
ij

i
i

4

( ( ))

[ ( ) ˜

( )( )
⎤
⎦⎥ò

gt g t b

g a a g

a a e

¶ + ¶ + +

= + -

- +

f

e
m

m

-

Y Y v m
d

S S u ,

12

t e i e
i

u , ,e e
( ) ( ) ( )

( )
( ) (¯ )* * òr r ga

e
e

¶ + ¶ = -n e
m

n e
m

m

where W
*
r r g= , S hWui ir= , S hu u Pij i j ijr g= + ,

S Sk
k ij

ijg= , S hW P0
2r= - , and log 12( )f g= . ρ is the rest

mass density, W is the Lorentz factor, h e P1 r= + + is the
specific enthalpy, v u ui i t= , S W0t r= - , Y n ne e bº is the
electron fraction (nX is the number density of X), e and P are the
specific internal energy and pressure of matter, respectively,
and mu is the atomic mass unit. P s Y, , e( )r and e s Y, , e( )r are
given by an equation of state (EOS) with s denoting the entropy
per baryon. We employ an EOS by Lattimer & Douglas Swesty
(1991, hereafterLS220;see Section 5.1 for more details). In
the right-hand side (rhs) of Equation (11), Di represents the
covariant derivative with respect to the three metric ijg .

2.2. Conservation of Energy and Lepton Number

As explained in Section 2.1, the formalism of our code that
treats the radiation-hydrodynamics equations in a conservative
form is suitable to satisfy the energy conservation of the total
system (neutrinos and matters;see also Kuroda & Umeda
2010and Kuroda et al. 2012 for more details). Let us first show
how the energy conservation law is obtained in our code.

To focus only on the energy exchange between the matter
and neutrino radiation field, we omit the gravitational source
term in the following discussion. Then, the equations of energy
conservation of matter and neutrinos (e.g., Equations (4) and

(11)) become

v P v d S n , 13t i
i i i( ( )) ( )( )ògt g t b e ga¶ + ¶ + + = e

m
m

E F E M n

S n . 14

t i
i i( ) ( ˜ )

( )
( ) ( ) ( ) ( )

( )

g g a b ga e

ga

¶ + ¶ - + ¶

= -
e e e e e

m
m

e
m

m

From the above two equations, one can readily see that the total
energy (sum of matter and neutrinos) contained in the
computational domain, E dx d Em

3 ( )( )ò òg t eº +n e , is con-
served in our basic equations as long as there is no net energy
flux through the numerical and momentum space boundaries
(i.e., d M n 0[ ( ˜ )]( )ò e e¶ =e e

m
m ).

The lepton number conservation needs to be satisfied with
good accuracy because it determines the PNS mass and the
postbounce supernova dynamics. We here explain how we treat
it in our code. As for the electron and neutrino number
conservation, the basic equations are given by

Y

m

Y v

m

d
S S u , 15

t
e

i
e

i

u u

, ,e e
( ) ( )( ) (¯ )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟* *

ò

r r

ga
e
e

¶ + ¶

= -n e
m

n e
m

m

q q q u

S u , 16

t i
i0( ) ( ) ( )

( )

( ) ( ) ( )

( )

ga ga ga e

ga
e

¶ + ¶ - ¶ 

= -

e e e e
ab

b a

e
m

m

where

q T u u , 171 ( ) ( )( ) ( ) ( ) ( ) eº - = +e
a

e
ab

b e
a

e
a-

q T h u , 181 ( ) ( )( ) ( ) ( ) ( ) eº = +e
ab

e
gb

g
a

e
a b

e
ab-

with J H L, , , ,1( ) ( )   eºa ab a ab- . The conservation equa-
tion for neutrinos(16) corresponds to Equation (3.22) (divided
by ε) in Shibata et al. (2011). Since the neutrino number
density measured by an Eulerian observer is expressed as

n d q , 19,Euler ,
0 ( )( )ò e ga=n n e

the equation of the total lepton number conservation becomes

Y Y v m d q q 0.

20

t l i e
i i i

u , ,e e( )( ) [ ]

( )
( ) (¯ )* * òr r ga e¶ + ¶ + - =n e n e

Here the total lepton fraction Yl is defined by

Y Y Y Y

Y
m

u
d q q . 21

l e

e t
u

,
0

,
0

e e

e e
( ) ( )

¯

( ) (¯ )òr
e

= + -

= + -

n n

n e n e

From Equation (20), one can readily see that the total lepton
number is conserved irrespective of the included neutrino
matter interaction processes in case there is no net flux through
the numerical and energy space boundaries. The distribution of
Yl into the each component (e.g., Y Y Y, ,e e ēn n ) is determined by
the details of the implemented microphysics, which should be
checked carefully and will be reported in Section 5.
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2.2.1. Neutrino Number Transport in the Diffusion Limit

In the collapsing iron core, it is well known that the central
core becomes opaque to neutrinos due mainly to scattering off
heavy nuclei when the central density exceeds ∼1011–12 g cm−3

(Sato 1975) and neutrinos are trapped with matter afterward. In
the diffusion limit at large neutrino opacities, the trapped
neutrinos move with the matter velocity vi for an Eulerian
observer. Thus, their advection equation can be described with
the same form of Ye as

Y Y v Source terms . 22t i
i ( ) ( )

* *
r r¶ + ¶ =n n

Because the source terms in the above equation amount to
equalthe negative value of the source terms in the electron
number conservation equation, the core lepton number is
conserved withgood accuracy until it gradually decreases by
diffusion in the PNS cooling phase. Since the central core mass
depends on the core lepton number, the CCSN simulation
should be able to capture this important phenomena
appropriately.

In our formalism, however, this is not a trivial problem
because we solve the energy–momentum conservation in
Equations (4)–(5) and not the neutrino number conservation
in Equation (16). In this section, we check whether our basic
equations can reproduce the neutrino diffusion limit ade-
quately, i.e., they reach asymptotically to Equation (22).

For simplicity, we assume in the following that the
spacetime is flat and the typical velocity of the matter field
(v) is much smaller than the speed of light (slow motion limit;
neglecting terms higher than the second order with respect
to v c( )).

Let us first check whether Equation (16) can satisfy the local
neutrino number conservation in the trapped region. In this
limit, theneutrino number density at each energy bin q0 and its
flux q i approach

q u
v

W
, 23t i

i
0 0 ( )  


= + ~ + ~

q u v q v . 24i i i i i i i0 ( ) ( )     = + ~ + ~ +

From these relations, it is obvious that the neutrino number
density at each energy bin q0 is transferred with the matter
velocity v i plus the diffusion velocity i  and the equation
of the total lepton number (Equation (20)) in the slow motion
limit becomes

Y Y v m d q q v

Y Y v 0,

25

t l i e
i i

t l i l
i

u ,
0

,
0

e e( )( ) [ ]

( ) ( )
( )

( ) (¯ )* *

* *

òr r ga e

r r

¶ + ¶ + -

= ¶ + ¶ =

n e n e

demonstrating that Equation (20) satisfies the local lepton
number conservation in the trapped region.

Next, we take the diffusion limit of Equation (4). In this
limit, H Ji should approach 0 (i.e., the radiation flux (Hi) in
the comoving frame vanishes). From this, the following
relation can be derived:

H Ev F P v F Ev0
4

3
, 26i i i ij

j
i i⟹ ( )~ - + - ~ ~

where we take a simple closure relation Pij E ij
3
d= in the

diffusion limit. Inserting this into the left-hand side of

Equation (4), one can get

E F P v

E Ev
E

v P v
4

3 3
27

t i
i ij

i j

t i
i ij

i j
ij

i j

( )

( ) ( )⎜ ⎟⎛
⎝

⎞
⎠

e

d e

¶ + ¶ + ¶ - ¶

~ ¶ + ¶ - ¶ - ¶ ¶

e

e

E Ev Ev P v
4

3

1

3
28t i

i
i

i ij
i j( ) ( )⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ e~ ¶ + ¶ - ¶ - ¶ ¶e

E Ev P v . 29t i
i ij

i j( ) ( ) ( )e~ ¶ + ¶ - ¶ ¶e

Moving from the rhs of Equation (27) to that of Equation (28),
we assumed that E has almost no spatial gradient well below the
neutrino spheres (at high opacities) in the prebounce core. This is
satisfied quite well as shown in the literature (Bruenn 1985),
in which a nearly flat Y en profile is shown in their standard
models within the central core with mass ∼0.5–0.6M after the
central density exceeds ∼5×1013 g cm−3. Note thatin
Equation (28)the third term Ev 3i

i( )-¶ , which is originally a
part of the advection terms in the energy space P vij

i j( )e¶ - ¶e ,
balances withpart of the spatial advection term Ev4 3i

i( )¶
and they lead to the second term in Equation (29). From this,
one can clearly see how the apparent advection speed of
E at each energy bin ε approaches the matter velocity v i in
the diffusion limit. Then, assuming that the neutrino number
density at each energy bin can be approximately expressed as

q v2 , 30i
i

0 ( )   ~ ~ - ~

in the slow motion limit, when we divide Equation (29) by ε

and integrate it in energy space, it can be summarized as

d q q v P v n n v . 31t i
i ij

i j t i
i0 0[ ( ) ( ) ] ( )ò e ¶ + ¶ - ¶ ¶ = ¶ + ¶e n n

From this, one can clearly see that the neutrino number density
n Y( )r=n n is transported with the same matter velocity v i in the
diffusion limit.

3. NUMERICAL METHOD

In this section, we describe how to evolve the radiation-
hydrodynamics variables.8 As we explained in the previous
section, we solve Equations (4), (5), and (9)–(12) as our basic
equations which are collectively expressed as

Q S S S S 0, 32t adv,s adv,e grv m ( )¶ + + + + =n

where Q denotes conservative variables

Q

S

Y

E

F

. 33

i

e

i

,

,

( )

( )

( )

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

*

*

r
g
gt

r
g
g

=

n e

n e

In Equation (32), Sadv,s, Sadv,e, Sgrv, and S mn denote theadvec-
tion term in space, theadvection term in momentum space,
thegravitational source, and theneutrino–matter interaction
term, respectively. Throughout this paper, with the exception
ofAppendix B, we divide this equation into the following

8 We omit our numerical method to evolve the spacetime variables that
areessentially the same as in Kuroda et al. (2012).
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two parts, which are expressed in the finite difference
expression as

Q Q
S S

t
0, 34

n
n n

adv,s grv ( )* -
D

+ + =

for the explicit part and

Q Q
S S

t
0, 35

n
n n

1

adv,e
1

m
1 ( )*-

D
+ + =n

+
+ +

for the implicit part, respectively. In Equations (34)–(35), tD is
the time step size between the nth and n 1th+ time steps and
the upper indices “n” represents the nth time step. Variables
with “∗” denote the time updated variables during an operator-
splitting procedure.

In Equation (34), S n
adv,s and S n

grv represent the terms with
respect to advection in space and gravitational fields at the nth
time step, both of which are added first in an explicit manner to
obtain conservative variables at a middle time step Q*. Next, in
Equation (35), the rest of terms, advection in energy space
(Sadv,e) and neutrino–matter interaction terms (S mn ) at
n 1 th( )+ time step, are added to Q* in order to find the
converged solution of Qn 1+ by an iterative method. We
separate thesource terms into the two parts, explicit and
implicit ones, becausethe typical time step size,

t 4 10 7D ~ ´ - s, which is determined by the speed of light
c, typical minimum grid width in our calculation x 500 mD ~ ,
and the Courant–Friedrichs–Lewy number CFL, e.g., 0.25, is
sufficiently short for the advection term in space Sadv,s and the
gravitational source term Sgrv as well as for all the geometrical
variables by an explicit update. However, it is too long to
follow, e.g., the weakinteraction term, which has asignifi-
cantly shorter timescale (10−9 s). We thus need to treat these
terms in an implicit way through Equation (35) to ensure a
numerical convergence and stability.

Here, we should comment on the treatment of the advection
terms in energy space Sadv,e. As we mentioned above, we solve
them implicitly in time as Equation (35) in our main results.
It means that there is a time gap tD between themoment of
the evaluation for advection terms in real space Sn

adv,s and that
in energy space Sn

adv,e
1+ . Although we can generally obtain

consistent results with previous studies regardless of the time
gap, it is noted that the treatment of the energy advection either
by the implicit or explicit scheme leads to visible changes in
the postbounce features. We will discuss this point further in
Appendix B.

In the following sections, we describe how to evaluate the
advection terms in space (Section 3.1) and in energy space
(Section 3.2), and then move on to describe the implicit time
update in Section 3.3.

3.1. Advection in Space

We employed a standard high-resolution,shock-capturing
scheme and utilize the HLL (Harten–Lax–van Leer) scheme
(Harten et al. 1983) to evaluate the numerical fluxes in space
(Kuroda & Umeda 2010). As for the fastest and slowest
characteristic wave speeds of the radiation field system
(Equations (4) and (5)), we again use the same definition as
in Kuroda et al. (2012;see also Shibata et al. 2011) and
connect rad,thinl and rad,thickl smoothly via the variable

Eddington factor χ as

3 1

2

3 1

2
, 36rad rad,thin rad,thick

( ) ( )l
c

l
c

l=
-

+
-

where rad,thinl and rad,thickl are the wave speed in the optically
thin and thick limits, respectively.
To enforce the numerical flux of the radiation field in the

opaque region as itasymptotically approachesthe diffusion
limit, we evaluate the energy flux (Fhll

0 ) and the momentum flux
(Fi

hll) as

F
F F Q Q

, 37L R R L
hll
0

0 0 0 0˜ ˜ ˜ ˜ ( )
˜ ˜ ( )l l l l
l l

=
- + -

-
+ - - +

+ -

and

F
F F Q Q

F F
1

2
, 38

i L
i

R
i

R
i

L
i

L
i

R
i

hll

2

2

( ˜ ˜ ) ˜ ˜ ( )
˜ ˜

( ) ( )

 



l l l l
l l

=
- + -

-

+ -
+

+ - - +

+ -

respectively (Audit et al. 2002; O’Connor & Ott 2013). Here,
QL R

a and FL R
a are the conservative variables and their

corresponding fluxes, respectively, with L/R denoting the
left/right states for the Riemann problem. All the radiation-
hydrodynamical variables are defined at the cell center. For
those cell centered (primitive) variables, we use a monotonized
central reconstruction, which has second order accuracy in
space, and obtain left/right states at the cell surface (see
Kuroda & Umeda 2010for amore detailed explanation). After
the reconstruction, all the characteristic wave speeds of the
matter and radiation fields are evaluated.
ò is a modification parameter to fit the numerical flux to the

diffusion limit, which we take as

x
min 1,

1
, 39( )⎜ ⎟⎛

⎝
⎞
⎠

k
=

D

where κ is the total opacity and xD is the grid width (Audit
et al. 2002; O’Connor & Ott 2013).

3.2. Advection in Energy Space

Regarding the advection term in energy space in all
conservation equations (Equations (4), (5), and (16)), we
define the advection fluxes at the interface of the energy bin as
the same as in Müller et al. (2010) so that all energy-integrated
advection terms will vanish. This can be achieved since both
terms,M̃a, appearing in energy and momentum conservation
equations, and qe ab in number conservation equation, are
expressed in terms of linear combinations of radiation
momenta, J, Ha, L ...ab , and we therefore can define their cell
surfaced values with an appropriate weighting function to
suppress theviolation of all conservations simultaneously.
For all orders of the radiation momenta X J H L, , ...{ }Î a ab ,

the following conditions need to be satisfied for number
conservation,

d X
X X

0 0, 40
i

i
i i

i

1 2 1 2⟹ ( )ò åe e
e

¶ = D
-
D

=e
+ -
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and for energy and momentum conservations,

d X d X X

X X
X

0

0,

41
i

i i
i i

i
i

1 2 1 2

( ) ( )

⟹

( )

⎡
⎣⎢

⎤
⎦⎥

ò ò
å

e e e e

e e
e

¶ = ¶ + =

D
-
D

+ =

e e

+ -

respectively. The rhs of the above equations represent the finite
difference expressions with i and i 1 2+ denoting the ith
energy bin and the interface between the i- and i 1 th( )+
energy bins, respectively. ieD is theenergy grid width

i i i1 2 1 2e e eD = -+ - . It is straightforwad to show that
Equation (40) can be automatically satisfied for any cell
surfaced quantities as long as they vanish at the outer boundary
in the energy space. By introducing a definition
X X Xi i i1 2

L
1

Rº ++ + , the rhs of Equation (41) can be
expressed as

X X X 0. 42
i

i i i i i i i i1
L

1
R[ ( ) ( ) ] ( )å e e e e e- - - - + D =+ -

As in Müller et al. (2010), we can get the solution of
Equation (42) as

X X , 43i
i

i i
i i

L

1
( )e

e e
xº

D
-+

X X 1 , 44i
i

i i
i i

R

1
( ) ( )e

e e
xº

D
-

-
-

where ix is a weighting function and is expressed as

f

f f
. 45i

i

i i

1 2

1 2 1 2

( )x º
+

s

s s
+

- +

In this study, we used a “Harmonic” interpolation ( 1s = ) for
the energy density fi 1 2( )s

+ as

f
E E

, 46i
i

r

i

r

1 2 3

1

1
3

i

i

i

i1 2

1

1 2

( )( ) ( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥e e

ºs e e
s

+

-

+

+
+

+

with ri i i i i1 2 1 2 1( ) ( )e e e e= - -+ + + (see Müller et al. 2010
for more details). Like these, just only by evaluating an
appropriate radiation momenta Xi 1 2+ at the energy bin surface,
we can simultaneously vanish Equations (40)–(41) numerically
and maintain energy, momentum, and number conservations.

3.3. Implicit Time Update

After the explicit update, we solve the following simulta-
neous equation (e.g., Equation (35));

f P
Q P Q

S P

S P
t

0, 47

n
n

n

n

1
1

adv,e
1

m
1

( ) ( ) ( )

( ) ( )

*
º

-
D

+

+ =n

+
+

+

+

where Q, Sadv,e, and S mn are expressed in terms of the primitive
variables P

P

u
s
Y

E

F

, 48

i

e

i

,

,

( )
( )

( )

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

r

=

n e

n e

at the n 1 th( )+ time step. Obviously, the baryon number
density does not change in this step, i.e., n 1*r r= + . To get the
solutions of the above simultaneous equation, we employ the
Newton–Raphson iteration scheme with the inversion of the
following matrix until a sufficient convergence is achieved:

f P
P

P f P , 49
I

I I( ) ( ) ( )d
¶
¶

= -

P P P , 50I I I1 ( )d= ++

for I 0, 1, 2 .....,= with the initial condition P P0 *= . As for
the convergence criteria for the Newton–Raphson iteration, we
monitor

P
P

tol, 51
I

I

∣ ∣
∣ ∣

( )d
<

where tol represents a tolerance and we typically
set tol 10 8= - .
We note thateven if we evaluate the advection terms in

energy space explicitly in time as S n
adv,e , Equations (47)–(51)

do not change except the term S Pn
adv,e

1( )+ in Equation (47) is
now moved to the explicit part.
Our method for time update from thenth to n 1 th( )+ time

step is summarized as follows and schematically drawn in
Figure 1.

1. Geometrical Update. We first evolve all the BSSN
and the gauge variables G={ ijg̃ , Aij

˜ , f, K, iG̃ , α, ib }
from the nth to the n 1 th( )+ time step.

2. Explicit Update. In the second step, all the
advection in space Sadv,s( ) and gravitational source Sgrv( )
terms are added to obtain the fractional timestep values

Figure 1. Flow chart to visualize how to update variables (G, Q, and P) from
thenthto the n 1 th( )+ time step (see the text).
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Q* and their consistent primitive variables
P G Q u s Y E F, , , , , ,n

i e i
1

, ,( ) ( )( ) ( )* r= n e n e
+ . Advection of

thetotal lepton number (Equation (20)) is also performed
simultaneously to evaluate Yl*.

3. Implicit Update. Finally, quantities in the fractional
timestep (Q*) are implicitly updated to those in the
n 1 th( )+ timestep (Qn 1+ ) by the Newton–Raphson
iteration until a sufficient convergence is obtained with a
constraint that the local lepton fraction does not change
(i.e., Y Yl

n
l

1 *=+ since n 1 *r r=+ ) in the diffusion region.

Here we shortly summarize some technical details to achieve
a sufficient lepton number conservation in practical core-
collapse simulations. As we have already mentioned in
Section 2.2, neutrino number conservation is formally satisfied
by solving the energy–momentum conservation Equations (4)–
(5). Especially, in the neutrino trapping regime, solving the
energy conservation (Equation (4)) is practically identical to
solving the neutrino number conservation (Equation (16))
which was proven in Section 2.2.1. However, in the finite
difference method, it does not guarantee a perfect match
between Equations (4)–(5) and (16) due to adiscretization
error. To minimize the difference, we add the following
constraint to Equation (51)

Y Y

Y
tol, 52l

I
l

l
I

∣ ∣ ( )
*-

<

as another criterion to exit the Newton–Raphson iteration.
Because of this additional criterion, the lepton number
conservation is also satisfied when the Newton–Raphson
iteration converges. Note that the local baryon numbers do
not change in Equation (47), i.e., Y Yl l

n 1* = + should be met if
the lepton number is conserved.

We also adopt another prescription in which Yl
n 1+ is used to

achieve a better convergence for the Newton–Raphson method.
In some cases, Ye

I happens to go beyond the range of the
employed EOS table during the iteration, especially when the
Jacobian matrix is not well evaluated. In those cases, we use
Yl

n 1+ to reset Ye
I as below:

Y Y Y Y . 53e
I

l
n I I1

e e
( )¯= - +n n

+

With this reset, we found that Ye
I hardly goes beyond the range

of the EOS table and also does not take anunreasonable value
for the supernova core. In addition, the number of the Newton–
Raphson iteration can sometimes be reduced. This is because
the reset value Ye

I automatically satisfies the lepton number
conservation Y Y Y Y Yl

I
e
I I I

l
n 1

e ē
= + - =n n

+ ,which leads to
faster convergence.

Without these two prescriptions, we observed that the central
lepton fraction at bounce deviates maximally ∼0.05 from the
value immediately after neutrino trapping sets in
( 10 g cmc

12 3r - ). Note that these ad hoc constraints are
introduced just to find a more efficient path toward conver-
gence in the implicit time update. The criterion for convergence
is solely given by Equation (51). Since we do not include
Equation (20) into (47), there is no inconsistency between the
number of simultaneous equations f P( ) and the unknown
variables Pn 1+ .

4. RADIATION TESTS

In this section, we show the results of several simple test
problems to check the validity of our M1 radiation transport
code. Except for Section 4.4, a flat spacetime is assumed
throughout this section.

4.1. Diffusion Wave Test

We first perform a diffusion wave test, by which we check
the validity of our flux implementation in the diffusion limit.
Following Pons et al. (2000), a Dirac δ-function-type radiation
source is initially located at r=0. Then we follow the
diffusion of the source into the optically thick medium with
zero absorptivity ( 0ak = ) and high scattering opacity
( 10s

2k = , 105). The source term in Equations (4)–(5) thus
becomes

S H . 54s ( )k= -m m

The 3D computational domain is covered by 100 equidistant
Cartesian zones in each direction (x 0.5, 0.5[ ]Î - ) for a model
with 10s

2k = . This corresponds to a Peclet number
Pe x 1sk= D = . Whilein the other model with 10s

5k = we
raise the nested level to 2 to achieve sufficient resolution at the
center and to check that the nested structure does not interfere
with the radiation propagation in the diffusion limit. In this
model, 323 numerical cells cover the base domain
x 0.5, 0.5[ ]Î - with a nested level of 2. The minimum grid
width and Peclet number at the center are thus

x 1 128 0.78D = ~ and Pe 10 128 7805= ~ , respectively.
Since Pe is much higher than unity, ò in Equation (39)
approaches zero, which enables us to check whether the
radiation transport in the diffusion limit is solved appropriately.
The analytical solution of the zeroth and first order radiation

momenta profiles at time T (Pons et al. 2000) is given as

E r T
T

r

T
, exp

3

4
, 55s s

3 2 2
( ) ( )⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

k k
=

-

F r T
r

T
E,

2
, 56r ( ) ( )=

respectively. From Figure 2, it can be seen that our code can
reproduce the analytical results quite well.

4.2. Shadow Casting Test

Next, we move on to a shadow casting test to check the
ability of our code and whether the anisotropic radiation field
can be appropriately evolved in the freestreaming limit. The
initial setup is essentially the same as in Kanno et al. (2013).
We set a perfect absorbing region at x 2, 3[ ]Î and
y z, 2, 2{ } [ ]Î - inside the numerical domain x 0, 12[ ]Î and
y z, 4, 4{ } [ ]Î - . We impose a constant radiation
E F f, 1,x max( ) ( )= from the left boundary. Numerical resolu-
tion is x y z 12 192( )D =D = D = and we set f 0.999max= .
Within the perfect absorbing region, the absorbing opacity is
set as x 10a

10k D ~ , otherwise 0ak = . The source term in
Equations (4)–(5) thus becomes

S J J u H , 57a
eq(( ) ) ( )k= - - +m m m

with J 0eq = and u 1, 0, 0, 0( )=m . In Figure 3, we show three
different time snapshots (T=3.5, 7.5, and 15.5) of the
radiation energy density in a logarithmic scale. The absorbing
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region is expressed by white dashed line and the radiation
shock front (x= T) is denoted by avertical green line. From
this figure, we see that the absorbing condition works
appropriately in our scheme and the radiation front propagates

with the light speed v=1. Furthermore, the region beyond the
absorbing box is barely contaminated by the radiation. These
features are in good agreement with Kanno et al. (2013).

4.3. Propagation in Free Streaming Regime

The next test is a spherical expansion of theradiation field
from a point-like source into anoptically thin medium. The
aim of this test is to check whether our code using the Cartesian
coordinates can maintain the sphericity of the field during the
expansion. By following Just et al. (2015), we define the
radiation source  with radius r 1.5 = which centers at the
origin of the 2D Cartesian domain with x 7.5, 7.5[ ]Î - . We
also define the purely absorbing region  centered at
x 3.5, 0( )= with radius r 1 = . Inside those two regions, the
absorptivity xa ( )k and equilibrium energy density xJ eq ( ) are
set as

x x

x

x y r10exp 4 ,

10, ,
58a

2 2 2
( ) { ( ) } ( )

⎪

⎪

⎧
⎨
⎩




k = - + Î
Î

and

x x
x

J
10 ,
0, ,

59eq
1

( ) ( )
⎧⎨⎩




= Î
Î

-

respectively. In other regions, we set x 0a ( )k = and
xJ 0eq ( ) = . We neglect the scattering opacity xs ( )k . The

source term in Equations (4)–(5) is thus the same as

Figure 2. Diffusion tests with 10s
2k = (Pe x 1sk= D = ) in theupper two panels and with 10s

5k = (Pe 780 ) in thebottom two. Our results (crosses) for the
evolutions of the energy density (left panels) and radial energy flux (right panels) are compared with the analytical ones (solid lines). Note that the simulations start at
T=1 and 200 for models with 10s

2k = and 10s
5k = , respectively. The model with 10s

5k = is performed with two nested level structure and we plot the spatial
profile of Pe in the bottomleft panel for reference. Note that we reduce number of plots for our results (crosses) to avoidoverploting.

Figure 3. Shadow test at different time slices T = 3.5, 7.5, and 15.5 from top
to bottom. Color contours represent theradiation energy density on
alogarithmic scale. The absorbing region is expressed by thewhitedashed
line and the expected radiation shock front (i.e., x = T) is denoted by a vertical
green line.
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Equation (57). Regarding the initial setup for the zeroth and
first order momenta of radiation field, we assume an arbitrary
dilute radiation field as

E 10 609 ( )= -

F E 10 . 6110∣ ∣ ( )= -

The 2D numerical domain is covered by 196 equally distant
Cartesian zones in each direction with two nested levels, i.e.,

xD varies from 15/784 to 15/196.
In this test, we use the following formula for the variable

Eddington factor χ (Levermore 1984):

F

F

3 4

5 2 4 3
. 62

2

2

¯
¯

( )c =
+

+ -

Only in this propagation test, we take two possible options for
evaluating the characteristic wave speeds of theradiation field
in the optically thin limit l. Assuming a flat spacetime and
using the following closure relation in the optically thin limit

P E
F F

F F
, 63

k
k

( )=mn
m n

the first one is (Shibata et al. 2011)

EF

F F

F

F F
max min , , 64i

i

k
k

i

k
k

S, ( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥l =  /

and the second one is (Skinner & Ostriker 2013)

Here, cosim qº is determined by the angle θ which defines the
orientation of the energy flux F relative to the interface normal
x i. Note thatin the rest of the paperwe use only Equation (64)
for the free streaming part.
Also of note, we limit the flux factor f F F Eij

i jgº to be
less than themaximum allowed value fmax by modifying the
first-order moment as

F f f Fmin , 1 , 66i imax( ) ( )

in every time step. Note that setting f 1max < means that we add
contribution from the isotropic radiation pressure Pij

thick
according to Equation (6). The reason of this modification
will be discussed later in this section.
In Figure 4, we show results for three different models taking

different values for fmax and using different evaluation
formulae for S SOl . The upper two panels (panels(a)
and(b))and the bottom one (panel(c)) are models using
Equations (64) and (65), respectively. In panels (a) and (c), we
take f 1max= , while f 0.93max= is taken in panel (b). The color
represents the energy density E in a logarithmic scale at four
different time slices (T 1, 3, 5, 7= ). The inner two squares
represent the boundary of thenested structure and the dotted
circle shows the purely absorbing region . From models (a)
and (c), which use f 1max= , we find non-isotropy which can be
seen as corrugated patterns behind the radiation front,
obviously with the exception of the absorbing circle  and
its shadowing region. Furthermore, in model (a) at T=7,
another remarkable violation of isotropy is seen at 45° away

Figure 4. Time snapshots of the spherical explosion test in the optically thin medium with different sets of f ,max( )l . Models (a) and (c) (top and bottom rows) are
modelstaking f 1max= , while f 0.93max= is taken in model (b) (middle row). Equations (64) and (65) are used in models (a)-(b) and (c), respectively. Color scale
represents radiation energy density on a linear scale in arbitrary units. The inner two squares represent the boundary of thenested structure and the dotted circle shows
the purely absorbing region .

65F F F F F F
2

3
4 3 4 3 2 2 4 3 4 3 .i i iSO, 2 2 2 2 2 2 ( )¯ ( ¯ ¯ ) ( ¯ ¯ ) ¯

⎧⎨⎩
⎫⎬⎭l m m=  - - - + - - - -
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from the coordinate axises. Note thatfrom snapshot at T=7 in
panel (a), this violation seems to be associated with the nested
structure. We, however, confirmed that this is not the artifact of
that by performing a run with a zero nested level. By
comparing models (a) and (c), the violation seen at 45° is
eliminated in model (c). Model (c) takes into account the
propagation angle ( im ) relative to the interface normal more
explicitly than model (a) when we evaluate SOl . We therefore
consider a more accurate evaluation in the characteristic wave
speedsl for the numerical flux (Equations (37)–(38)) is key to
follow the radiation in anoptically thin limit properly. While in
panel (b), in which we use f 0.93max= , we do not see any
spherical symmetry breaking.

We also apply this test to a supernova core profile. We fix
the hydrodynamical background, which has a typical core
profile at T 100pb ~ ms, and follow only the propagation of
neutrino radiation. The neutrino transport part is identical to our
practical calculation reported later in Section 5 and all relevant
neutrino–matter interactions, gravitational redshift, and Dop-
pler shift terms are taken into account. There is thus a transition
from anoptically thick to athin regime. We calculate two
models with different values for fmax.

S,il (Equation (64)) is
used in both models to evaluate the characteristic wave speeds.
In Figure 5, we show the radial profiles of (electron-type)
neutrino luminosity for two cases: one is calculated with
f 0.999max= (black diamonds) and the other is with f 0.93max=
(red filled triangles). As can be clearly seen, beyond the shock
position (R 100 km) where it is optically thin regime, a large
scatter is seen at R300–400 km for amodel with
f 0.999max= . The spatial location of the highly deviated
radiation is again concentrated 45~  away from the coordinate
axes,which isthe same as in the previous simple propagation
test (panel (a) in Figure 4). Meanwhile, in model with
f 0.93max= , there is little deviation and the surface-integrated
local luminosity stays nearly constant in the transparent region,
as it should be.

From these two tests, we are currently enforced to set a
ceiling value for the flux factor f f 0.93max = in the practical
core-collapse simulation to follow spherical-like propagation
stably. Since f 1max= is the physically correct value, one may

suspect that our modification can be an obstacle for comparison
of the emergent radiation profile with previous studies. From
previous fully relativistic Boltzmann transport simulation
(Liebendörfer et al. 2001), however, it was shown that the
flux factor higher than, e.g., ∼0.93 appears only beyond
R500–1000 km. Therefore, even if we evaluate the
emergent neutrino profile at the same radius R=500 km as
previous studies, it is altered only slightly bya few percentand
the modification cannot be a significant obstacle in this study.
Obviously, the SN hydrodynamics itself is not affected by our
artificial treatment since it is applied only to the optically thin
region.

4.4. Gravitational Redshift and Doppler Shift

To check the energy-coupling terms for gravitational redshift
and Doppler shift, M n( ˜ )( )ga e¶e e

m
m and M i( ˜ )( )ga e g¶e e

m
m in

Equations (4)–(5), we repeat the same tests performed in
Müller et al. (2010) andO’Connor (2014). We consider the
propagation of radiation from a sphere with radius R=10 km
through a curved spacetime and sharp velocity profile in
spherical symmetry. Regarding the sharp velocity profile, we
take the following:

u

r

c
r

r

c
r

r
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
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Here, ur is the radial component of ui. As for the curved
spacetime, we take the same energy density profile for matter
which is used in the second test problem in Section 4.3 and
solve the Hamiltonian constraint to obtain the conformal factor
ψ and lapse α. When we solve the Hamiltonian constraint, we
assume azero velocity profile (v 0i ib= = ) and the confor-
mally flat approximation ( ij ij ij

4 4˜g y g y d= = ). As for the initial
neutrino profile within the radiating sphere, we take thezero
chemical potential 0m =n and a temperature of 5 MeV, i.e.,

15.7 MeVeá ñ ~ , in the free streaming limit E F Fij
i jg= .

Here eá ñ is the mean energy of neutrinos as measured in the
comoving frame. Outside of the central radiating sphere, we
choose an arbitral dilute radiation field with 15.7 MeVeá ñ ~ .
We do not evolve neutrinos inside the radiating sphere and
follow the propagation only at R 10 km. The 3D computa-
tional domain is a cubic box with 3000 km width (i.e., the outer
boundary is at the radius of 1500 km from the origin) and
nested boxes with 7 refinement levels are embedded. Each box
contains 643 cells and the minimum grid size near the origin is

x 366D = m. As for the energy grid of the neutrino radiation
field, we use logarithmically spaced 20 energy bins N 20( )=e
which center from 1e = to 300MeV. We calculate two models
with and without the sharp velocity profile. Both models are
calculated in the curved spacetime.
For thegiven velocity and spacetime profiles, the free

streaming neutrinos propagate byobeying the following
relations (Müller et al. 2010; O’Connor 2014):

W v1 const, 68r( ) ( )a e+ á ñ =

Figure 5. Arbitrary normalized surface-integrated local neutrino luminosities
measured by an Eulerian observer. The background profile is a stationary and
spherically symmetric SN core taken at the postbounce time 100 ms. Models
are with two different maximum allowed flux factors, f 0.999max= (black
diamonds) and 0.93= (red filled triangles).
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r d F L const, 69rr
r

2
eul ( )òga g e º =

where W is the Lorentz factor, and v u ur r
t= . 6g y= and

rr 4g y= - are the determinant and rr-component of the three
metrics, respectively, in the conformally flat approximation.
Leul is the luminosity measured by an Eulerian observer.
Equation (69) is derived from the stationary solution of
Equation (4) with neglecting the source terms.

In the top panel of Figure 6, we show the background
profiles for ψ, α, and u1 r- . eá ñ and Leul are plotted in the
middle and bottom panels, respectively. In the middle panel,
our results (filled triangles) and analytical ones (solid lines) are
plotted. The analytical expression for eá ñ is derived from
Equation (68), where the constant in the rhs is evaluated at
R=10 km. Numerical results are taken after they settle down
in nearly stationary.

As seen in the middle panel, our results reproduce the
analytical ones quite well except at the shock front. We
consider that the less agreement at the shock front originates
from the coarse spatial resolution. The finite difference
expression for the term ua b in the energy-coupling terms
cannot capture the sharp velocity profile with enough accuracy.
From the bottom panel, we can find the Eulerian luminosity
stays nearly constant with a few percent deviation beyond

R 20 km. Note that the zig-zag pattern seen in Leul is an
artifact of the mesh refinement.

5. CORE COLLAPSE OF A 15Me STAR

In order to confirm the validity of our new supernova code, it
is of primary importance to make a detailed comparison with
the previously published results. We employ the data from 1D-
GR neutrino transport simulations (Liebendörfer et al. 2005;
Sumiyoshi et al. 2005; Müller et al. 2010) and from 2D-GR
ones (Müller & Janka 2014). We chose these models because
all of them took the same progenitor and employed similar
microphysics in the GR CCSN simulations. Liebendörfer et al.
(2005) presented detailed comparison of two independent
numerical codes, AGILE-BOLTZTRAN (Liebendörfer
et al. 2004) and VERTEX-PROMETHEUS (Rampp &
Janka 2002). Since their results are available online9, we are
able to make a detailed comparison with their data set. AGILE-
BOLTZTRAN solves the GR Boltzmann equation with the Sn
method in spherically symmetric Lagrangian mesh, whereas
VERTEX is an Eulerian code that solves the moment equations
of a model Boltzmann equation by the VEF method in the
Newtonian hydrodynamics plus a modified GR potential
(VERTEX-PROMETHEUS) and also in the conformally flat
GR hydrodynamics (VERTEX-CoCoNuT;Dimmelmeier et al.
2002; Müller et al. 2010). Our code is rather similar to
VERTEX-CoCoNuT than AGILE-BOLTZTRAN except for
the different geometrical solvers and the different coordinate
systems are adopted. In the following, we label the results of
AGILE-BOLTZTRAN as “ABG15,” of VERTEX-PRO-
METHEUS as “VXG15,” and of Müller et al. (2010) as
“BMG15.”10

5.1. Numerical Setups

We employ a 15Me progenitor (model “s15s7b2” in Woosley
& Weaver 1995) and follow core-collapse, bounce, and initial
postbounce phase up to ∼50 ms. We use the EOS of Lattimer &
Douglas Swesty (1991;LS EOS) with an incompressibility
parameter of K=220MeV. Even though our choice of
K=220MeV is different from the one (K= 180MeV) used
in Liebendörfer et al. (2005), Sumiyoshi et al. (2005), Müller
et al. (2010),Müller & Janka (2014), andThompson et al. (2003)
showed that differences in the neutrino profiles among models
with the different K of LS EOS are a few percent around core
bounce and less than ∼10% for the first ∼200 ms after bounce.
We thus consider that the different choice ofK barely disturbs the
aim of our comparison study.
As for neutrino opacities, the standard weak interaction set in

Bruenn (1985) and Rampp & Janka (2002) plus nucleon–
nucleon bremsstrahlung (Hannestad & Raffelt 1998) is taken
into account (see Table 1 and Appendix A for more details).
For simplicity, we neglect higher harmonic angular dependence
of the reaction angle when we calculate the source terms for
neutrino electron scattering, thermal pair production, and
theannihilation of neutrinos, and nucleon–nucleon bremsstrah-
lung (i.e., B ,nes tp

0,
( )e

m and C ,nes tp
1,
( )e
m are set to be 0;see

Appendices A.3 and A.4).
In this study, we investigate two models, 1DG15 and

3DG15, both of which are computed in the 3D Cartesian

Figure 6. In the top panel, we show background profiles for ψ, α, and
u1 r- . The mean energy eá ñ and Eulerian luminosity Leul profiles are plotted in

the middle and bottom panels, respectively. Two test cases, with (u 0r ¹ ) and
without (ur=0) the shock profile, in the curved spacetime are plotted. In the
middle panel, our results are denoted by filled triangles and the solid lines are
analytical results. Note that eá ñ for the model with the shock profile is shifted
upward with 1 MeV to avoid the overlapping of plots.

9 We used data which can be downloaded at http://iopscience.iop.org/0004-
637X/620/2/840/fulltext/datafiles.tar.gz.
10 We read their data from the figures digitally and plot them in this paper.
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coordinates. While model 3DG15 is calculated without any
artificial constraints, model 1DG15 is considered to mimic the
1D model by artificially suppressing the non-radial component
of the flow velocity ui as

u
x u

x
x . 70i

j
j i

2∣ ∣
( )=

Although this artificial elimination could potentially lead to
ashift of the kinetic energy into the thermal one, our previous
study (Kuroda et al. 2012) showed that the violation of the
momentum constraint is negligible during the early postbounce
phase (T 100pb  ms where Tpb denotes the postbounce time).

The 3D computational domain is a cubic box with 8000 km
width (i.e., the outer boundary is at the radius of 4000 km from
the origin) and nested boxes with 5 refinement levels, at the
beginning of calculation, to 8 refinement levels, when the
central rest mass density reaches 5×1013 g cm−3, are
embedded without any spatial symmetry. Each box contains
643 cells and the minimum grid size near the origin at bounce is

x 488D = m. In the vicinity of the stalled shock front R 100~
km, our resolution achieves x 3.6D ~ or 7.2 km, i.e.,
theeffective angular resolution becomes 3.6 km/100 km 2~ 
or 4~ , which is considered to be arather too coarse resolution
to follow a nearly spherical structure in the Cartesian grids.
Compared to recent 3D-GR studies (Ott et al. 2012; Kuroda
et al. 2014), the resolution is still approximately two times
coarser. The time step size is t 10 s7D = - which corresponds
to ∼0.06 in the CFL number. The main reason for taking such a
small timestep is to get a rapid convergence during the
iteration in our implicit time update part (seeSection 3.3),
which is not restricted by the CFL condition (of the explicit
update in a pure hydrodynamics case). As for the energy grid of
the neutrino radiation field, we use logarithmically spaced 20
energy bins N 20( )=e which center from 1e = to 300MeV.

5.2. Results

In this section we start to make a detailed comparison first
before bounce (Section 5.2.1) and then after bounce (Sec-
tion 5.2.2) between our code (models 1DG15 and 3DG15),
AGILE-BOLTZTRAN (model ABG15), VERTEX-PRO-
METHEUS (model VXG15), and (partly) from VERTEX-
COCONUT (model BMG15). In the following, we call the
results from the latter three codesthe reference results.

5.2.1. Before Bounce

In the upper panel of Figure 7, we plot the central (matter)
entropy s, electron fraction Ye,and the total lepton fraction
Y Y Yl e= + n as a function of the central (restmass) density cr
for model 1DG15 (black), ABG15 (blue), and VXG15 (green),
respectively. The lower panel of Figure 1 shows the evolution
of cr and the deviation of the ADM mass MADMD from its
initial value. Here MADM is given by

n

M dx S d E e

e
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d e S d F
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where the second line denotes energy loss due to momentum
and neutrino energy flux through the numerical boundary and n̂
represents a unit normal vector to the surface element ds. In the
above surface integration, we neglect energy loss due to
gravitational wave emission since it is negligibly small
( M c10 11 2~ -

 ;e.g., Scheidegger et al. 2010) compared to the
violation of the ADM mass in the CCSN environment
(see,e.g., Kotake 2013 for a review).
The top panel of Figure 1 shows that the neutrino trapping

starts 2 10c
12r ~ ´ g cm−3 for model 1DG15 and the lepton

fraction remains constant with Yl=0.323 afterward. The
evolution of our central Ye and Yl (black lines) is quantitatively
in good agreement with VXG15 (green linelsee also Buras
et al. 2006b; Müller et al. 2010) and ABG15 (blue line). As

Table 1
The Opacity Set Included in this Study and their References

Process Reference Summarized In

n e pen « - Bruenn (1985), Rampp & Janka (2002) Appendix A.1
p e nēn « + Bruenn (1985), Rampp & Janka (2002) Appendix A.1

A e Aen « ¢- Bruenn (1985), Rampp & Janka (2002) Appendix A.1
p pn n« Bruenn (1985), Rampp & Janka (2002) Appendix A.2
n nn n« Bruenn (1985), Rampp & Janka (2002) Appendix A.2
A An n« Bruenn (1985), Rampp & Janka (2002) Appendix A.2
e en n«  Bruenn (1985) Appendix A.3

e e ¯nn«- + Bruenn (1985) Appendix A.4
NN NN¯nn« Hannestad & Raffelt (1998) Appendix A.5

Note.Note that ν, in neutral current reactions, represents all species of
neutrinos ( , ,e e x¯n n n ) with xn representing heavylepton neutrinos (i.e., ,n nm t

and their anti-particles).

Figure 7. Upper panel: the central (matter) entropy s, electron fraction Ye,and
total lepton fraction Y Y Yl e= + n as a function of central density cr for model
1DG15 (black), ABG15 (blue), and VXG15 (green). Lower panel: comparison
of postbounce evolution of the central density (solid) between the four models
and the deviation of the ADM mass MADMD (dashed–dotted) for our two
models with (model 1DG15) or without the artificial elimination of the non-
radial velocity (model 3DG15;see the text).
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already explained in Section 2.2, we solve the advection
equation (Equation (20)) of the total lepton number (density)
Ylr as a constraint to ensure the lepton number conservation.
Because of the treatment, the evolution of the lepton/electron
fraction is in excellent agreement with the reference results. As
already pointed out by O’Connor (2014), this also relies on the
accurate implementation of inelastic neutrino–electron scatter-
ing, energy–bin coupling, and the appropriate closure relation.

After the core deleptonization ceases (i.e., Yl stays nearly
constant with increasing central density), the inner core evolves
almost adiabatically and the entropy remains nearly constant as
it should be. A small breaking of the adiabaticity (decrease by
3.8% in the central entropy) is seen in model 1DG15 before
bounce (see also O’Connor 2014). However, the (time-
averaged) value s k1.3 baryonB

1~ - is in roughlygood
agreement with the reference results (see also Liebendörfer
et al. 2005; Sumiyoshi et al. 2005; Buras et al. 2006b;Müller
et al. 2010) and this would not have a big impact on the
subsequent core evolution due to the short simulation time in
this study.

As for the total energy conservation (bottom panel of
Figure 3), it is maximally violated with the amount
of M M4 10ADM

4D ~ ´ -
 for model 1DG15 (i.e.,

8 1050~ ´ erg). The violation at bounce is slightly worse than
that ( 5 10ADM

50D ~ ´ erg) of the VERTEX-CoCoNut code
(Müller et al. 2010), which should be improved and kept much
smaller in more precise CCSN modeling. As one would
anticipate, the violation is bigger for model 1DG15 (dashed
black line) with the artificial elimination of the non-radial
velocity than for model 3DG15 without (dashed red line). In
our previous study (with the gray M1 scheme; Kuroda et al.
2012), the violation of the ADM mass is typically one order of
magnitude smaller than that for the corresponding 3D model
with (approximately) twice higher resolution. Because the
computational time for the implicit update in the current code is
very expensive (using our best available resources), we are now
forced to employ a quite coarse resolution. It is important to
clarify how the violation of the total energy conservation would
be improved with increasing numerical resolution. We leave
this for future work.

Figure 8 shows a spectral shape of the neutrino distribution
function f ,( )n e (filled triangles),

f
J

,
4

, 72,

3
( ) ( )( )n e

pe
= n e

which is estimated at the innermost grid point of model 1DG15
when the central density cr reaches 1011,12,13,14 g cm−3, and at
bounce, respectively. Solid curves represent the Fermi–Dirac
distribution at equilibrium. From the left panel, it can be seen
that β-equilibrium is achieved for electron-type neutrino ( en ) at
10 g cm 10 g cmc

12 3 13 3 r- - , which is consistent with the
neutrino trapping density as shown in Figure 7. In Bruenn
(1985), the β-equilibrium for en was obtained after

2.46 10c
12r = ´ g cm−3 in their model that correspondsto

ours (“standard” model). Note that at bounce, electron-type
neutrinos, in the low-energy range 5 MeV , slightly violate the
Fermi blocking, i.e., the distribution function f e( )n exceeds
one. The excess, however, is 10−5 and we consider that it is a
negligible amount. As shown from the middle ( ēn ) and right
panels ( Xn ) of Figure 4, other neutrino species are thermalized
only after cr exceeds 1014 g cm−3. These features are
quantitatively consistent with Bruenn & Mezzacappa (1997)
andRampp & Janka (2002). It may be surprising that
regardless of the use of different EOS and different
hydrodynamics codes, the trapping density of en
( 2 3 10trap

12r = ~ ´ g cm−3) in modern simulations (e.g.,
top panel of Figure 3) is in good agreement with the pioneering
work in the 1980s (Bruenn 1985). It should be also noted that
for the more accurate determination of the core deleptonization
the improved electron capture rates (Langanke & Martínez-
Pinedo 2000; Juodagalvis et al. 2010) need to be implemented
as in Langanke et al. (2003) andLentz et al. (2012a, 2012b).
So far, we have shown that our M1 scheme can capture

several important phenomena regarding deleptonization, such
as the neutrino trapping and the conservation of the lepton
fraction in the diffusion region. As already denoted in
Section 2.1, this is not trivial in the finite difference method
especially when one transports conservative radiation moments
E F, i( )( ) ( )e e instead of the corresponding comoving variables of

, i( )( ) ( ) e e . A key is findingan appropriate Eddington factor

( )c e by which the neutrino energy flux approaches
F E v4 3i i

( ) ( )e e in the diffusion limit (seeEquation (26)).
Since this relation can be achieved only when P E 3ij ij

( ) ( )g=e e

holds, ( )c e and F̄ should approach 1/3 and 0 (e.g., our closure
relation (Equation (6))) in the limit, respectively.
To show that both F h H H J2¯ ( ) ( ) ( )= mn e

m
e
n

e and F i
( )e actually

approach 0 and E v4 3 i
( )e in the opaque region, we plot in

Figure 9 the radial profiles of F Erá ñ á ñ (solid lines) and H Jrá ñ á ñ

Figure 8. Neutrino distribution function f ,( )n e (filled triangles) and Fermi–Dirac distribution function at equilibrium (solid lines) at the innermost mesh for model
1D-GR. Lines and triangles are color coded according to the infall phase. Note that f ,( )n e for anti-electron neutrino ( ēn ) is multiplied by 105 for comparison.
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(dashed–dotted lines) at different cr . Here X d Xò eá ñ º repre-
sents the energy integration of X. At 10c

12r = g cm−3, both
solid and dashed–dotted green lines almost coincide. However,
as the infalling matter velocity comes closer to beingrelativistic
( 10c

13r g cm−3), both lines start to split especially within
R 70 km. In the central region (R 70 km), H Jrá ñ á ñ
approaches 0 toward the center, whereas F Erá ñ á ñ becomes
negatively large with the peak being around R 30~ km and then
converges to zero to the center. We also plot the radial velocity of
matter (Vr) measured in the Eulerian frame and multiplied by 4/3
(blue diamonds) at 10c

14r = g cm−3.
Because of our appropriate evaluation for the Eddington

factor, the flux factor measured in the Eulerian frame
(approximated here by F Erá ñ á ñ) nicely matches with V4 3r in
the optically thick region. This neutrino advection is essentially
important for the radiation energy (E( )e ) to move with the same
velocity v i with matter in the opaque region (seeEquations
(26)–(29)). Here we shortly comment on the definition of the
flux factor F̄ . In our previous study (Kuroda et al. 2012), we
employed the definition F F F Eij

i j¯ gº , which is one of the
candidates for F̄ (Shibata et al. 2011). As can be clearly seen
from the split between the solid and dashed–dotted lines in
Figure 9, we show that our previous choice of the flux factor is
not adequate because the optically thick medium moves (albeit
mildly) relativistically in the collapsing core.

5.2.2. After Bounce

In Figure 10, we show the radial profiles of various
quantities (the rest mass density ρ, radial velocity vr, matter
temperature T, entropy s, averaged neutrino energy Eν,and
electron/neutrino fraction Y Ye l) at the selected time slices
shortly after bounce. Here, we define the average neutrino
energy Eν as

E
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d f
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When the central density exceeds nuclear saturation densities
(top left panel of Figure 10), the core bounces because of the

strong repulsive force of nuclear matter. Then the bounce shock
is formed (green line, left middle panel of Figure 10) which
propagates outward with dissociating infalling heavy nuclei
into free protons and neutrons. The production of enormous
free protons/neutrons significantly enhances theelectron
capture process, e p nen- , behind the stalling shock.
Immediately after bounce, those high-energy neutrinos (top
right panel) are still trapped inside the optically thick medium
behind the shock. The medium, however, quickly becomes
transparent to neutrinos and those neutrinos are liberated
suddenly as a burst. This neutronization burst enhances further
electron capture behind the shock due to the continuous
deviation from the β-equilibrium, leading to a characteristic
trough in the Ye profile seen at R 50~ km behind the shock
(right bottom panel of Figure 10). Due to the energy loss by the
photodissociation of the iron nuclei and the rapid neutrino
leakage, the bounce shock stalls at R 70~ km within
T 3pb ~ ms (left panels of Figure 10). Such dynamical features
are commonly seen in the reference models (Liebendörfer
et al. 2005; Müller et al. 2010). This indicates that our M1
scheme can capture the basic behaviors of the neutrino
propagation from the optically thick to thin medium (otherwise
it would result in either the absence or the different position of
the Ye trough).
How the neutronization burst is produced is more clearly

depicted in Figure 11 where we plot the radial profiles of the
neutrino ( en ) energy flux (solid lines) and the radial velocity of
matter (dashed–dotted lines). At T 0.7pb = ms, enormous
neutrinos are still trapped and confined behind the shock,
which is shown as a sharp peak in the energy flux around

R10 20  km. At T 1.7pb = ms, these neutrinos overtake
the shock front because of the lowering opacity outward. Then
the pulse of the neutrino burst propagates freely to the optically
thin region (time label larger than 4) and eventually emerges
out of the computational domain (labels 9 and 10). These
profiles are consistent with the results of Bruenn & Haxton
(1991), Thompson et al. (2003), and Rampp & Janka (2002).
Now we move on to make the code comparison in the

postbounce phase. Figure 12 compares the evolution of the
shock radii for five models; two from our code (1DG15 (black
line) and 3DG15 (red line)), one from AGILE-BOLTZTRAN
(ABG15, blue line), and two from VERTEX with PRO-
METHEUS (VXG15, green line) and with CoCoNuT
(BMG15, light blue line). Note that the final simulation time
(Tsim) is 50 ms for model 1DG15 (black line), whereas Tsim is
32 ms for model 3DG15 (red line) simply limited by our
available computational resources.
The deviation seen in model 3DG15 (red line in Figure 12)

from the rest of the 1D models is remarkable especially after
T 5pb ~ ms. This is because the bounce shock expands more
energetically in 3D pushed primarily by prompt convection
behind the shock. Using the same progenitor, Müller et al.
(2012b) showed that the average shock radius becomes larger
in 2D (their model G15) than in 1D (their model G15–1D) at
T 70pb ~ ms because of the hot-bubble convection starts which
is seeded during the deceleration of the prompt shock. The
Cartesian coordinates haveintrinsic quadrupole perturbation
and it significantlyaffects the growth of the prompt convection.
The postbounce time, when the significant multidimensionality
appears, thus differs between our model and the ones using the
spherical polar coordinates. In addition, our coarse numerical

Figure 9. Radial profiles of F Erá ñ á ñ (solid lines) and H Jrá ñ á ñ (dashed–dotted
lines) for electron-type neutrino ( en ) when the central density reaches

10c
12,13,14r = g cm−3 in model 1DG15. Vr denotes the radial velocity of

matter (see the text).
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resolution might also lead to the earlier appearance of the initial
convection because of even larger seed perturbations.

The larger shock radius in model 3DG15 than that in 1DG15
is also consistent with our previous result with the leakage

scheme (Kuroda et al. 2012; see also Hanke et al. 2012; Couch
2013for extensive discussions about the dimensional depen-
dence on the postbounce dynamics). Now let us focus on our
(pseudo-)1D model (black line in Figure 12). The shock radius

Figure 10. Radial profiles of the rest mass density ρ, the radial velocity vr normalized by the speed of light c, the matter temperature T, the entropy s, the averaged
neutrino energy Eν,and the electron/neutrino fractions Y Ye l at selected time slices shortly after bounce Tpb=0, 1, 3, and5 ms. Note in this plot that profiles only
along the x-axis of model 1DG15 are shown (because model 3DG15 shows almost the same profiles).

Figure 11. Radial profiles of the (electron-type) neutrino energy flux (solid
lines) and the radial velocity (dashed–dotted lines). The numbers beside each
line (1, 2, 3..) correspond to time slices, which are denoted in the lower
rightwith Tpb in ms (0.7, 1.7, 2.7..). For the radial velocity in the left panel, we
plot only the first four time slices.

Figure 12. Time evolution of the shock radius for five different models
1DG15, 3DG15, ABG15, VXG15, and BMG15. As for our models, we plot the
angle-averaged values.
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of our code is in good agreement with the reference results
exceptionally before T 20pb  ms, whereas the shock radius
tends to be smaller until the end of the simulation time. We
consider that the difference could primarily come from the use
of the Cartesian coordinates with low numerical resolution and
not from the neutrino–matter interaction terms. This is because

our calculation in 1D spherical coordinates with using the same
neutrino–matter interaction terms shows a good agreement in
the shock evolution (seeAppendix B). We give a more detailed
discussion elsewhere below.
In Figures 13 and 14, we show various quantities from our

code (labeled by “ 1DG15á ñ” and “ 3DG15á ñ” only in Figure 14),

Figure 13. In the clockwise direction from the top left panel, we show radial profiles of the (angle-averaged) rest mass density ρ, entropy s, electron fraction Ye, and
radial velocity Vr at Tpb=3 ms for models “ 1DG15á ñ,” “ABG15,” and “VXG15.”

Figure 14. Same as Figure 13, but at Tpb=50 ms for models “ 1DG15á ñ,” “ABG15,” and “VXG15.” “ 3DG15á ñ” at Tpb=32 ms is also plotted as a reference by a thin
solid line.
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AGILE-BOLTZTRAN (“ABG15”), and VERTEX-PRO-
METHEUS (“VXG15”) at two different postbounce times.

At 3 ms after bounce (Figure 13), the (angle-averaged) radial
position of the stalled shock (bottom left panel) is R 70~ km
for model 1DG15 (thick solid line). As seen, the velocity
profile matches more closely the profile from AGILE-
BOLTZTRAN (ABG15) than from VERTEX-PROMETHEUS
(VXG15). This is also the case for the profiles of the density
(top left panel), entropy (top right panel), and Ye (bottom right
panel). It should be noted that the more recent results from the
VERTEX-PROMETHEUS code with an improved GR poten-
tial (Marek et al. 2006) agree very well with the AGILE-
BOLTZTRAN code, hence with our code. Therefore, we
mainly compare to model ABG15 in the following.

Looking at Figure 13 more closely, one can see that the
profiles of our entropy (top right panel) and Ye (bottom right
panel) differ appreciably from model ABG15 especially in the
region behind the stalled shock (R 70 km) and above the
unshocked inner core (R 10 km). Let us remark that the
early postbounce evolution startsfrom the shock formation,
followed by the emergence of the neutronization burst, until the
shock stall is numerically most challenging. The code
differsfrom the shock-capturing scheme as well as the
treatment of GR, andthe accuracy of the neutrino transport
schemes could potentially impact the radiation-hydrodynamics
evolution at the transient phase (i.e., 3–5 ms after bounce).
Another remarkable difference is seen in the electron fraction.
Among three results, only our result shows negative bump in Ye
profile at R10 20  km. However, this bump disappears in
our 1D spherically symmetric test problem in which we solve
the advection terms in energy space Sadv,e explicitly in time
(seeAppendix B for more details).

Regarding the shock capturing, AGILE-BOLTZTRAN uses
an artificial viscosity type with the second order accuracy in
space, whereas our code employs the approximate Riemann
solver (HLLE scheme like the VERTEX code) with second-
order accuracy in space forbothradiation-hydrodynamical and
geometrical variables. Thus, the hydrodynamics part of our
code is slightly more accurate than AGILE-BOLTZTRAN. On
the other hand, the use of the approximate closure relation
apparently falls behind the Boltzmann code especially in the
semi-transparent region. Above all, the use of the Cartesian
coordinates, which is very common in full GR simulations,11

makes the comparison to the genuine “1D” results of the
reference models (based on the 1D Lagrangian code (AGILE)
and the multi-D code using the polar coordinates (VERTEX))
even more challenging.

At T 50pb = ms (Figure 14), the differences between our
pseudo-1D model (1DG15, thick line) and the reference results
still remain to be seen rather remarkably in the postshock
region (R 100 km);however, this is not surprising given the
different shock evolution (Figure 12). Here we consider that the
numerical resolution in the postshock region sensitively affects
the shock evolution. In the current resolution, the typical grid
size of our nested box is ∼7.8 km at R120 240  km ( 4~ 
resolution). As shown in Figure 12 (red line), the deviation of
the shock radius from the reference models becomes remark-
able at T 20pb  ms, which roughly coincides with the time
when the shock reachesthe coarser level of the nested grid.
There the shock front is resolved only by a few grid cells. We

consider that at least a factor of two or more higher resolution is
required to reproduce 1D results, i.e., to recover the sphericity
of the system in the Cartesian coordinates. However,this is not
an easy task as we will discuss the code performance in
Section 6.
From Figure 14, one can also see that the profile of the

density, velocity, entropy, and Ye at the central region (R 60
km) agrees with the reference results roughly within an
accuracy of ∼10%. Given the insufficient numerical resolution,
this good agreement in the semi-transparent region would
support the validity of the prescribed closure scheme, which is
in line with the recent results by O’Connor (2014) and Just
et al. (2015). Figure 14 also shows that the profile of model
3DG15 (thin solid line) differs from that of model 1DG15
(thick solid line).
The entropy profile for model 3DG15 (thin line) behind the

shock (R 130 km) becomes flatter compared to the 1D
models, which is due to convective mixing behind the shock.
As a result, the profiles of Ye and entropy in model 3DG15
become slightly closer to the reference results, though the
similarity is just a coincidence and is not meaningful.
Figure 15 shows the comparison of the neutrino luminosity

Lν which is the surface integral of the energy-integrated
comoving energy flux H( )e

m through the surface of cubic box
with 1000 km width (i.e., approximately 500 km from the
origin). The peak luminosity, L 4.1 10,peak

53
e

= ´n erg s−1,
well agrees with 3.85 1053´ (ABG15), 3.8 1053´ (VXG15),
and 4.3 1053´ (BMG15), respectively. After the neutroniza-
tion phase when the 1D core enters to a quasi-static phase
(T 20pb  ms), the anti-electron and heavylepton neutrino
luminosities show quite consistent behaviors with the reference

Figure 15. Same as Figure 12 but for the neutrino luminosity Lν of electron-
type neutrinos (top panel) and anti-electron-type and heavy-type neutrinos
(bottom panel) for the five different models.

11 See, however, Sanchis-Gual et al. (2014) for arecent report of the code
development of numerical relativity in the polar coordinates.
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models and the differences between our results and, e.g.,
ABG15 are as small as ∼10%.

Regarding the en luminosity, we see a systematically lower
value than the other three reference models. The difference
reaches ∼30% (or ∼1052 erg s−1) compared to ABG15 at
T 50pb = ms. As a consequence, en and ēn luminosities become
comparable at T 45pb ~ ms, which is significantly earlier than
the reference values T 70pb ~ ms in ABG15, BMG15,and also
in a model of O’Connor (2014). This means that the lepton
number loss from PNS is less than those previous studies since
it can be measured roughly by the time integration of
L Le e e e¯ ¯e e-n n n n . However, our 1D spherical test, albeit in the
Newtonian limit, shown in Appendix B, does not exhibit such
inconsistency and shows quite reasonable neutrino profiles with
a previous study. We therefore consider that the reason for less
agreement, especially seen in L en , mainly comes from the
spatial advection term in the Cartesian coordinates and not
from the local neutrino matter interaction terms.

We also compare the neutrino spectral difference in
Figure 16. In the figure, we show time evolutions of the
rmsenergies of emergent neutrinos E ,rmsn measured at the
surface of cubic box with 1000 km width. For E ,rmsn , we use
the same definition as in Liebendörfer et al. (2005) and it is
defined as below:

E
d f

d f

,

,
. 74,rms

4

2

( )

( )
( )ò

ò

e n e e

e n e e
ºn

Again in Figure 16, we plot averaged value E ,rmsá ñn over
the surface of the cubic box. From the figure, we
find good agreement with the reference codes and differences
are less than ∼1MeV for en and ēn and 2 MeV for Xn after the
neutronization phase ceases T 20pb  ms. In our model 1DG15,
we see a spurious second peak in the E ,rmsXn profile around
T 13pb ~ ms. However, the second peak disappears in our model
3DG15 and we thus consider that it is most likely due to our
artificial treatment for the matter velocity and is insignificant.

6. SUMMARY

In this paper, we have presented our newly developed multi-
D full GR neutrino radiation hydrodynamic code. The code
was designed to evolve the Einstein field equation together
with the GR radiation hydrodynamic equations in a self-

consistent manner while satisfying the Hamiltonian and
momentum constraints. Using an M1 closure scheme, we
solved spectral neutrino transport of the radiation energy and
momentum in conservative way based on a truncated moment
formalism. Beside the energy and momentum conservation, we
paid particular attention to the lepton number conservation,
especially in the neutrino trapping regime.
We explained formally that the neutrino number is

transported appropriately by solving only the energy and
momentum conservation equations of the neutrino radiation
field, especially focusing on the neutrino trapping regime. In
addition, we showed that the advection terms in energy space
are essential for reproducing the neutrino trapping.
To validate our new numerical code, we first made bottom

line tests such as the diffusion test, shadow casting test, and
spherical propagation in free streaming regime to check the
advection term in space. In addition,the important factors in
CCSN simulation, gravitational redshift and Doppler shift,are
tested in a curved spacetime with a sharp velocity profile.
Through these standard tests, we confirmed that our code is
capable of reproducinganalytical results accurately and that all
source terms other than the neutrino–matter interaction terms
are correctly implemented.
We then performed a practical core-collapse simulation

with which we could also confirm whether the above-
mentioned neutrino number conservation, especially in the
trapping region, is satisfied adequately. We followed the
gravitational collapse, bounce, and initial postbounce phases
up to T 50pb ~ ms of a 15M star to make a detailed
comparison with previous studies with Boltzmann neutrino
transport. Regarding neutrino opacities, we currently
employed abaseline set where inelastic neutrino–electron
scattering, thermal neutrino production via pair annihilation,
and nucleon–nucleon bremsstrahlung were included. We
started the code comparison before core bounce. Important
features such as the evolution of the central Yl and entropy as
well as the neutrino trapping density showed nice agreement
with the reference models. Next we made the code
comparison after bounce until the stall of the bounce shock.
At this transient phase, we checked that the M1 code can
capture the overall evolution in the Boltzmann codes
regarding the neutrino propagation from the opaque to the
transparent region. Considering our insufficient resolution and
the difference coordinates used, the neutrino luminosity and
the energy spectrum of our code showed good agreements
with the reference results. The peak luminosity
(L 3.9 10,peak

53
e

= ´n erg s−1) showed almost the same value
with the reference models. After the neutronization, the
neutrino luminosities showed consistent values though there
is a systematic lower shift in the electron-type neutrino
luminosity. The rms energies of the emergent neutrinos
showed a similar level of the match with the reference results,
which demonstrates the validity of our code.
In the end, we briefly discuss for the future run (using Exa-

scale platforms) in order to check a numerical convergence of
our 3D results and to get acloser match with the Boltzmann
results in the much longer postbounce phase. As already
mentioned, we were forced to adopt a low numerical resolution
in this study (effective angular resolution behind the stalled
shock ∼120 km is ∼8 km/120 km ∼3°.8) due to our limited
computational resource. The code has already been tuned to get
a high parallel efficiency (90%, e.g., going from 2048 to 4096

Figure 16. Time evolution of rms energies of emergent neutrinos E ,rmsn for five
different models. Our results are measured at the surface of cubic box with
1000 km width.
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cores) with a very high performance efficiency (∼32%) which
measures the ratio of the real performance of our code to the
theoretical peak performance measured by the platform, Cray
XC30 in our case. However, it still takes ∼1.25 CPU days to
follow ∼1 ms postbounce in model 3DG15 by the peta-flops
machine occupying ∼10% of its total resource (2048
processors). By only comparing the angular resolution 2  of
recent numerical studies (e.g., Hanke et al. 2013; Müller &
Janka 2014; Takiwaki et al. 2014), the employed resolution in
this study is approximately two times coarser. Currently, the
wall clock time per each timestep in the postbounce phase (the
typical numerical time step t 10 7D = - s) is ∼5 s if we use 4096
processors (i.e., we can follow the postbounce time of ∼1.7 ms
per day, which we write as 1.7 ms day−1 in the following).
With this performance, we estimate how much computational
resources and how much computational time are required
for the twice high-resolution model to follow ∼200 ms
after bounce, e.g., until the shock revival is expected to occur
for low-mass progenitor stars in 3D (e.g., Takiwaki et al. 2014;
Melson et al. 2015). Since our current resolution at the origin

x 480 mD ~ is marginally acceptable, we may just need to
double the number of the numerical meshes in each nested box.

If we are able to double the resolution with the
fixed innermost mesh size and use 4096 23´ ~ 32,000
processors, we can also follow the same postbounce evolution
∼1.7 ms day−1or ∼3.4 ms day−1 occupying 4096 2 23´ ´ ~
64,000 processors. Even if we can luckily take the latter case
(∼3.4 ms day−1), we still need approximately two months to
follow ∼200 ms after bounce occupying the ∼64,000 proces-
sors. For more massive progenitors, the shock revival in 3D
models would be much more delayed than in 2D
(T 600pb  ms, e.g., Marek et al. 2006; Müller et al. 2012a,
2012b; Nakamura et al. 2014b). This is apparently beyond the
maximum computational time allocatedforthe K computer
and surely needs Exa-scale platforms (in the next decade
to come).

Before the advent of these next-generation supercomputers,
it is noted that we actually have many tasks to improve our
code. We expect that we can still enhance the numerical
efficiency, especially when we get a convergent solution during
the Newton–Raphson iteration in the implicit update. At
present, the convergence becomes worse where the energy
fluxes of neutrinos F Hm m become non-negligible (i.e., just
above the neutrino sphere). We have confirmed that the
neutrino–election scattering is one of the dominant factors that
delays the convergence. With an eye toward theactual
application of this code in CCSN simulations, we plan to
continue our code refinement, in which we not only need to
employ a more elaborate set of neutrino opacities (e.g.,
Horowitz 2002; Burrows et al. 2006; Sumiyoshi & Röpke
2008; Martínez-Pinedo et al. 2012; Fischer et al. 2013; Bartl
et al. 2014) with including the higherorder angular dependence
of the reaction angle that was omitted for simplicity (e.g.,
Section 5.1), but also to find a more efficient algorithm to deal
with the resulting (more complicated) Jacobi matrix in the
implicit update. This study is only our very first step toward a
more realistic coding, which is indispensable for quantitative
study of stellar core-collapse and the explosion mechanism.
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APPENDIX A
NEUTRINO MATTER INTERACTION TERMS

In this appendix, we summarize the neutrino matter
interaction processes included in this study, which are as
follow: absorption and emission processes

n e p, 75e ( )n « -

p e n, 76e¯ ( )n « +

A e A ; 77e ( )n « ¢-

isoenergy scattering of neutrinos off nucleons and heavy nuclei

n n, 78( )n n«

p p, 79( )n n«

A A; 80( )n n«

inelastic neutrino electron scattering

e e; 81( )n n«

thermal neutrino pair production and annihilation

e e ; 82¯ ( )nn«- +

and nucleon–nucleon bremsstrahlung

NN NN . 83¯ ( )nn«

The four vector neutrino matter interaction term Sm is given
by summation of all these interaction terms as

S S S S S S , 84nae, iso, nes, tp, brem, ( )º + + + +m m m m m m

where Snae,m, S iso,m, Snes,m, S tp,m,and Sbrem,m are the four vector
source terms of neutrino absorption and emission (nae),
isoenergy scattering of neutrinos off nucleons and heavy
nuclei (iso), inelastic neutrino electron scattering (nes), thermal
neutrino pair production and annihilation (tp), and nucleon–
nucleon Bremsstrahlung (brem), respectively.
We briefly summarize each interacting kernels, opacities,

and source terms in thefollowing subsections. For more
detailed expressions and explanations, the reader is referred to
Bruenn (1985), Hannestad & Raffelt (1998), andRampp &
Janka (2002). The derivation of the four vector source term
from these quantities is given by Shibata et al. (2011).

A.1. Neutrino Absorption and Emission

We consider that neutrino absorption and emission: by
free neutrons n e pen « - , by free protons p e nēn « + ,and
by heavy nuclei A e Aen « ¢- . The four vector source term
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Snae,m is given by
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where naek is the opacity, k T1 Bb = with kB the Boltzmann’s
constant, and e p ne ē

m m m m m= - = - +n n is the chemical
potential of neutrinos in thermal equilibrium with matter. Here,

em , nm , and pm are the chemical potentials of electrons, neutrons,
and protons, including the rest mass energy of each particle,
respectively. For each reaction ( n e pen « - , p e nēn « + and

A e Aen « ¢- ), we first evaluate absorptivity s1 1[ ]l - and then
emissivity j s 1[ ]- .

Absorptivity for reaction n e pen « - is expressed as
(Bruenn 1985; Rampp & Janka 2002)
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where we employed gV=1 and gA=1.23 as form factors
resulting from the virtual strong interaction processes.
F 1 expx x

1( ) [ ( ( ))]e b e mº + - - is the Fermi distribution
function of fermion x with energy ε. G 8.957 10F

44(= ´ - MeV
cm3) is the Fermi constant.

For thereaction p e nēn « + ,
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where Q m c m cn p
2 2= - is the rest mass energy difference of

the neutron and proton.
Finally, for the reaction A e Aen « ¢- ,
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where Q n pm m¢ º - + D is the mass difference between the
initial and the final states through the reaction. By following
Bruenn (1985) andRampp & Janka (2002), we employed
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for the number of protons Np and holes Nh in the dominant GT
resonance for the electron capture.
As for the values pnh and nph , we adopted those proposed in

Bruenn (1985) andRampp & Janka (2002),
n n
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, 91pn

n p

n p( ( ))
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n n
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p n
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=
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while we set

n , 93pn p ( )h =

n , 94np n ( )h =

in the non-degeneracy regime where Q 0.01n pm m- - <
MeV is met.
Once we evaluate the absorptivity, the emissivity j and the

opacity κ are obtained as (Bruenn 1985)

j e
1

, 95( )( )
l

=e
b e m

e

- n

and

j
1

. 96nae ( )( )k
l

= +e e
e

A.2. Isoenergy Scattering of Neutrinos

The four vector source term for isoenergetic scattering of
neutrinos off free nucleons and heavy nuclei is written as
(Shibata et al. 2011)

S H . 97iso, iso ( )( ) ( ) ( )c= -e
m

e e
m

To evaluate iso
( )c e from the isoenergetic scattering kernel

R ,iso ( )e w , we expand it into a Legendre series in terms of ω
(here ω is the cosine of the scattering angle) up to the first order
as

R ,
1

2

3

2
, 98iso iso,0 iso,1( ) ( )( ) ( )e w w» F + Fe e

where iso,0
( )F e and iso,1

( )F e are the zeroth and first order of scattering
kernels, respectively. After angular integration of the angular-
dependent source term with respect to ω, iso

( )c e is expressed as
below (Shibata et al. 2011):

. 99iso 2 iso,0 iso,1( ) ( )( ) ( ) ( )c e= F - Fe e e

For thescattering process on thefree nucleon (n/p),
thezeroth- and first-order kernels become
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Obviously, iso,0 1
( )F e has a dimension MeV−2 s−1 and iso

( )c e thus
has a dimension s−1. In theabove, N takes n (neutron) or p
(proton) and hV

N and hA
N are defined as (Bruenn 1985)
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where Wq is the Weinberg angle and we adopt the value
sin 0.2325W

2 q = . By following Mezzacappa & Bruenn
(1993c) andRampp & Janka (2002), we evaluate NNh as
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Next, for coherent scattering on heavy nuclei, the zeroth- and
first-order kernels become (Bruenn 1985)
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with C h h 2V A V A
p

V A
n0 ( )= + , C h hV A V A

p
V A
n1 ( )= - , y b4 2e= ,

and b A4.8 10 6 2 3= ´ - . Here nA, A, and Z denote thenumber
density of heavy nuclei, the atomic number,and the charge,
respectively.

A.3. Neutrino Electron Scattering

Inelastic scattering of neutrinos off electrons plays important
role to help neutrinosescape more freely from thecenter as a
consequence of down-scattering and it thus enhances delepto-
nization of central core. The source term S nes,

( )e
m is expressed in

terms of the collision integral B ,
nes

( )e W as (Shibata et al. 2011)
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m

e
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where lm is a unit normal four vector orthogonal to um. The
collision integral B ,
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( )e W along the propagation direction Ω is

expressed as
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where R , ,nes,in out ( )e e w¢ is the angular-dependent inward/
outward scattering kernel and ω is the cosine of scattering
angle, i.e., angle between Ω and W¢. With expanding
the angular-dependent inward/outward scattering kernel
R , ,nes,in out ( )e e w¢ into a Legendre series with respect to ω

and taking up to the first order as

R , ,
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and with decomposing the neutrino distribution function after
scattering into isotropic and non-isotropic parts as
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the final expression of the scattering integral is described as

B f A B l C C l, .

115
,

nes
,nes

0
,nes

0,
,nes

0
,nes

1,( )( )
( )

( ) ( ) ( ) ( ) ( )e= W + + +e e e
m

m e e
m

mW

In the above, we used the same notations used in Bruenn (1985;
see their Equations (108)–(113)) for A ,nes

0
( )e , B ,nes

0,
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0
( )e ,and

C ,nes
1,
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m with the exception of B ,nes
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m , whichhave

three spatial components (the zeroth component is determined
from orthogonality H u 0=m

m ) and of B ,nes
0,
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m , which is a factor
of 3 larger than that of Equation (109) in Bruenn (1985). They
are explicitly written as
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where we employ

f
J

4
, 1200

3
( ) ( )( )e

pe
= e

f
H3

4
, 1211,

3
( ) ( )( )e

pe
=m e

m

for the isotropic and non-isotropic parts of the distribution
function (see also Shibata et al. 2011). For an explicit
evaluation for ,

nes,in out,0 1
( )F e e¢

/ , we refer the reader to Yueh &
Buchler (1976) andBruenn (1985).
Since coefficients (116)–(119) do not depend on thepropa-

gation direction Ω, the final integral Equation (111) with
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imposing Equation (115) becomes
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where h g u uº +mn mn m n is the projection operator. Since nesF

has a unit [cm3 s−1], A ,nes
0
( )e , B ,nes

0,
( )e

m , C ,nes
0
( )e , and C ,nes

1,
( )e
m thus

have a unit [s−1] which is required to let the dimension of S nes,
( )e

m

to be [MeV3 s−1].

A.4. Thermal Pair Production and Annihilation of Neutrinos

As for the thermal pair production/annihilation process of
neutrinos, we take the same approach as theneutrino electron
scattering process. The collision integral B ,

tp
( )e W is expressed as
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where f̄ denotes theanti-neutrino distribution function and
R , ,tp,pro ann ( )e e w¢ is the angular-dependent production/anni-
hilation kernel. We again expand the kernel R , ,tp,pro ann ( )e e w¢
up to the first order in ω as

R , ,
1

2

3

2
, 124tp,pro ann

,
tp,pro ann,0

,
tp,pro ann,1( ) ( )( ) ( )e e w w¢ » F + Fe e e e¢ ¢

and the final expression of the scattering integral is thus
described as
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which has exactly the same expression as that of theneutrino
electron scattering (Equation (115)). Again, coefficients have
the same notations as in Bruenn (1985;see their Equations
(117)–(121)) and described as
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For an explicit evaluation for ,
tp,pro ann,0 1
( )F e e¢

/ , we refer the reader

to Bruenn (1985). The final expression of the source term S tp,
( )e

m

is simply obtained by replacing coefficients in Equation (122)
with those of thermal process, i.e., with Equations (126)–(129).

A.5. Nucleon–Nucleon Bremsstrahlung

The collision integral for Nucleon-nucleon Bremsstrahlung
B ,

br
( )e W has the same expression as that of thethermal pair

production/annihilation of neutrinos andthereforethe same
notations used in Appendix A.4 can be directly applicable.
B ,

br
( )e W is written as
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where R , ,br,pro ann ( )e e w¢ is the production/annihilation ker-
nel. As for the Bremsstrahlung process, we again expand the
kernel R , ,br,pro ann ( )e e w¢ into a Legendre series, but take only
the zeroth order term in ω for simplicity. Then the kernel
becomes
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Coefficients used in the final expression for the collision
integral and the source term are simply evaluated by replacing

tpF in Equations (126)–(129) with brF .
Isotropic production kernel ,

br,pro,0
( )F e e¢ can be evaluated by

following manner.
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In the above equation, indexes D and ND denote thedegene-
rate and non-degenerate limit of free nucleons, respectively,
and (nn, pp, np) represent bremsstrahlung due to neutron–
neutron, proton–proton, and neutron–proton pair, respectively.
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In the above equations, ,i
br
D ND, ( )f e e¢ have a dimension in
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[MeV−2 cm3 s−1]. We employed values for ia , Xi, mi, and Si as
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After deriving the production kernel, we can obtain the
annihilation one by using a following relation

R e R, , , , . 136br,ann br,pro( ) ( ) ( )( )e e w e e w¢ = ¢b e e+ ¢

A.6. Summary of the Source Term and Mean Free Paths

By combining all the source terms mentioned above, the
final expression becomes
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where J eq
( )e is written by
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In the end, we plot inverse mean free paths of each process
for reference. Assumed hydrodynamical profiles are 1010r = g
cm−3, T=0.638MeV, and Ye=0.43 (Figure 17), which
corresponds to the central profile of “s15s7b2” in Woosley &
Weaver (1995), 1011r = g cm−3, T=1.382MeV, and
Ye=0.4 (Figure 18), which is the same condition used in
Figure 36 in Bruenn (1985), and 1013r = g cm−3, T=3MeV,
and Ye=0.25 (Figure 19), which is a typical profile after
neutrino trapping during collapse phase. As in Bruenn (1985),
we assumed the final state occupancy of the neutrinos is zero.
More explicitly, we plot 1 mfpl [cm−1] expressed by
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, neutrino absorption and emission

, isoenergy scattering

, neutrino electron scattering

, thermal pair production and annihilation

, nucleon nucleon bremsstrahlung .
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Since theisoenergy scattering rate has the same value for all
neutrino species, we only plotted for electron-type neutrinos.
Note thatthe inverse mean free path for bremsstrahlung is
multiplied by 1015 (Figure 17), 1010 (Figure 18),and 105

(Figure 19), andfor thethermal processit is multiplied by 1010

(Figures 17–19).

APPENDIX B
COMPARISON IN 1D SPHERICAL COORDINATE

In this appendix, we perform a core-collapse simulation
using 1D spherical symmetric M1 neutrino transport code. The
aim of this section is to test the local neutrino–matter
interaction terms implemented in our main 3D Cartesian grid-
based radiation-hydrodynamics code. Since our 3D multi-
energy neutrino radiation-hydrodynamics code with higher
resolution than the one used in Section 5 is still computation-
ally demanding, it is not easy to check the spatial resolution
dependence on the practical core-collapse simulation. There-
fore, we cannot assess whether the differences between our
(pseudo-)1D results and previous 1D ones come from the
spatial advection terms or from the neutrino–matter interaction

Figure 17. Energy dependence of theinverse mean free paths for each
process labeled at the top part. The hydrodynamical background employedis

1010r = g cm−3, T=0.638 MeV, and Ye=0.43 and we assumed the final
state occupancy of the neutrinos is zero. With using the EOS of Lattimer &
Douglas Swesty (1991) with compressibility parameter K=220 MeV, several
representative thermodynamical quantities become s k0.71 B= baryon−1,
A=65.5, and Z=28.2.
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terms. To expel the ambiguities coming from the spatial
advection term, we develop a new spherically symmetric M1
code in the Newtonian limit. The basis of the new 1D code is
the same as our main 3D Cartesian grid-based code. We solve
Equation (32) with the same neutrino opacities used in model
“s15Nso_1d.b” in Buras et al. (2006b). The spatial advection
term Sadv,s in 1D spherical symmetry is evaluated in a similar
way as in Nakamura et al. (2014b) andHoriuchi et al. (2014)
and the advection terms in energy space Sadv,e are also slightly
modified for thespherical polar coordinate. To take the same
approach as the recent M1 neutrino transport codes (O’Con-
nor 2014; Just et al. 2015), we solve the advection terms in
energy space Sadv,e explicitly in time.

In Figure 20, we plot our results (1D−Sph) for the neutrino
luminosity, mean energy, shock radius, and the Ye profile
together with reference values of VERTEX-PROMETHEUS
(model “s15Nso_1d.b” in Buras et al. 2006b;VX−N15)

except the Ye profile. In the Ye profile, we also plot results
obtained from a model with solving Sadv,e implicitly in time,
i.e., as the same as our main 3D code. Our results show a good
agreement with VX−N15. The maximum deviations are
∼7×1051 erg s−1 in the luminosity and ∼0.9 MeV in the
mean energy. The mean energies, eeá ñn and ēeá ñn , show slightly
higher values than the reference ones.They are, however,
within the error bounds reported in previous code comparisons
(Liebendörfer et al. 2005; Müller et al. 2010). The neutrino
luminosities show quite consistent behavior, especially in late
phase T 150pb  ms, when the neutrino heating becomes more
important. Contrary to our main results reported in Section 5.2,
the Ye trough observed at R 10 cm6~ (seeFigure 13)
disappears in the explicit model (solid lines), while the Ye
trough still exists in the implicit model (dotted). These two
models support the idea to evaluate both Sadv,s and Sadv,e at the
same time slice. We are going to examine this point in our main

Figure 18. Same as Figure 17 but with 1011r = g cm−3, T=1.382 MeV, and
Ye=0.4. This hydrodynamical profile returns s k1.19 B= baryon−1,
A=73.9, and Z=30.5. Since N A Z 40= - > , neutrino absorption on
heavy nuclei is blocked with our current electron capture rate (Equation (90)).

Figure 19. Same as Figure 17 but with 1013r = g cm−3, T=3 MeV, and
Ye=0.25. This hydrodynamical profile returns s k1.25 B= baryon−1,
A=167.7, and Z=49.3. Since N A Z 40= - > , neutrino absorption on
heavy nuclei is blocked with our current electron capture rate (Equation (90)).
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3D Cartesian based code in the near future. From this test, we
confirm that the neutrino matter interaction terms are correctly
implemented.
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