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The gravitational-wave (GW) asteroseismology is a powerful technique for extracting interior
information of compact objects. In this work, we focus on spacetime modes, the so-called w modes,
of GWs emitted from a proto-neutron star (PNS) in the postbounce phase of core-collapse supernovae.
Using results from recent three-dimensional supernova models, we study how to infer the properties of the
PNS based on a quasi-normal mode analysis in the context of the GW asteroseismology. We find that
the w1-mode frequency multiplied by the PNS radius is expressed as a linear function with respect
to the ratio of the PNS mass to the PNS radius. This relation is insensitive to the nuclear equation of state
(EOS) employed in this work. Combining with another universal relation of the f-mode oscillations, we
point out that the time dependent mass-radius relation of the PNS can be obtained by observing both the
f- and w1-mode GWs simultaneously. Our results suggest that the simultaneous detection of the two
modes could provide a new probe into finite-temperature nuclear EOS that predominantly determines the
PNS evolution.
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I. INTRODUCTION

At last, the first direct detection of gravitational waves
(GWs) was made by the twin detectors of the Laser
Interferometer Gravitational-Wave Observatory (LIGO)
from two binary black hole (BH) mergers [1,2]. In addition
to LIGO, second-generation detectors like Advanced
VIRGO [3] and KAGRA [4] will be operational in the
coming years. Furthermore, third-generation detectors like
Einstein Telescope (ET) and Cosmic Explorer (CE) are
being proposed [5,6]. At such high level of precision, these
detectors are sensitive enough to a wide variety of compact
objects. The primary targets are compact binary coales-
cence such as the merger of BHs and/or neutron stars (NSs)
(e.g., [7]). Other intriguing sources (e.g., [8]) include core-
collapse supernovae (CCSNe) [9], which mark the cata-
strophic end of massive stars and produce all these compact
objects.
Extensive numerical simulations have been done so far

to study GW signatures from core-collapse supernovae
(e.g., [10–16]). It is now almost certain that the g-mode
oscillations excited in the vicinity of the protoneutron star

(PNS) are one of the most strong GWemission processes in
the postbounce supernova core. The typical GW frequency
(fg) of the g mode is approximately expressed as fg ∼
GMPNS=R2

PNS [10–12,15] where G is the gravitational
constant, MPNS and RPNS represent the mass and radius
of the PNS, respectively. Predominantly due to the mass
accretion to the PNS, fg increases with time after bounce
[10,15]. Neutrino-driven convection and the standing
accretion-shock instability (SASI) [17,18] play a key role
to effect the activity of the mass accretion to the PNS. For
progenitors with high-compactness [19], the SASI is more
likely to dominate over neutrino-driven convection in the
accretion phase [20,21]. In such a case, large-scale aniso-
tropic flow associated with the SASI leads to strong GW
emission, whose typical GW frequency closely matches
with that of the SASI motion [12,14]. The SASI-induced
GW frequency fSASI ∼ 100 Hz is significantly lower than
that of the g-mode frequency (fg ∼ 500–1000 Hz). The
detection of these distinct GW features is thus expected to
provide a smoking-gun evidence to infer which one is more
dominant in the supernova engine, neutrino-driven con-
vection or the SASI [12,14].
The linear perturbation approach (e.g., [22] for a review)

is another way, which enables us to study the fundamental*hajime.sotani@nao.ac.jp
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properties of compact objects sometimes in a simplified
manner. With the quasinormal mode analysis, one can
determine the oscillation frequencies, once a background
model is prepared. Since the oscillation spectra strongly
depend on the properties of the source, one may extract the
information of the source object via the correlation between
the oscillation spectra and stellar properties. This technique
is known as asteroseismology. In fact, important properties
of the NS physics such as nuclear symmetry energy in
the crust have been constrained by observations of quasi-
periodic oscillations in the magnetar giant flares [23–29]. It
has been also suggested that the properties of a cold NS,
such as the mass (M), radius (R), and the nuclear equation
of state (EOS), could be constrained by the direct obser-
vations of GWs (e.g., [30–36]).
Among the above studies, it has been shown that the

frequencies of the fundamental oscillations (f modes) and
of the spacetime oscillations (w modes) from cold NSs are
characterized by the square root of the stellar average
density, ðM=R3Þ1=2, and the stellar compactness, M=R,
respectively, independently from the EOS [30,31]. Thus, if
simultaneous observations of the f and w1 modes in GWs
are made possible, one could in principle determine the
mass and the radius of the cold NS from the average density
and the compactness (see [22] for a review). We remark
that, in order to determine the EOS for a high density
region, one may need to detect the GWs from several cold
NSs to sample the mass-radius relation.
Unlike a cold NS, the perturbative analyses in the case of

a PNS are only a few [37–40]. This may come from the
difficulty for providing the background model for the PNS.
That is, the structure of the PNS depends on not only the
relation between the pressure and energy density but also
the radial profile of the electron fraction (Ye) and entropy per
baryon (s), while the distribution of Ye and s are determined
only via neutrino radiation-hydrodynamics core-collapse
supernova simulations that are generally computationally
expensive [41–43]. In our previous study [39], we focused
on the f modes from the PNS, adopting the Ye and s
distributions from one-dimensional (1D) supernova
simulations. Then, we have shown that the f-mode GW
frequency is characterized by the average density of the PNS
independently of the progenitor models.
In this work, we focus on another specific oscillation

from a PNS, i.e., w modes. Unlike fluid oscillations, these
spacetime modes can be considered only in the relativistic
framework [44,45]. w modes are oscillations of spacetime
itself, which are almost independent of the fluid oscilla-
tions. It is also known that the oscillation spectra of the
axial-type w modes are quite similar to those of the polar-
type wmodes [46]. Thus, in this paper, we will consider the
axial-type w modes from the PNS. Regarding the back-
ground model, we use results from three-dimensional
general-relativistic (GR) simulations in Ref. [12]. By com-
bining with our previous finding about the f mode [39], we

investigate how we can enhance the predicative power of
extracting the information of the PNS via the w-mode GWs
using the outcomes of the most recent three-dimensional
supernova models.
This paper is structured as follows. In Sec. II, we

describe the PNS models that we use as a background in
this work. We then briefly summarize the perturbation
equations for a quasinormal mode analysis in Sec. III. The
main results are presented in Sec. IV. We give a conclusion
in Sec. V. Unless otherwise mentioned, we adopt geometric
units in the following, c ¼ G ¼ 1, where c denotes the
speed of light, and the metric signature is ð−;þ;þ;þÞ.

II. PNS MODELS

Regarding our background models of the PNS, we take
results from Ref. [12], where three-dimensional GR sim-
ulations [47] have been done to follow the hydrodynamics
from the onset of core collapse of a 15 M⊙ star [48],
through core bounce, up to ∼250 ms after bounce. We
consider that the three-dimensional model is more appro-
priate and realistic to describe the PNS evolution particu-
larly just after bounce. This is simply because that
hydrodynamics above the PNS surface is far from spheri-
cally symmetric and it effects both SN explosion mecha-
nism and thus PNS thermodynamics. Two EOSs were used
with different nuclear interaction treatments, which are
SFHx [49] and TM1 [50]. In the following, the two, three-
dimensional GR models are named SFHx and TM1, which
simply reflects the EOS employed. For SFHx and TM1, the
maximum gravitational mass (Mmax) and the radius (R̄) in
the vertical part of the mass-radius relationship of a cold NS
are Mmax ¼ 2.13 and 2.21 M⊙, and R̄ ¼ 12 and 14.5 km,
respectively [51]. Thus SFHx is softer than TM1. Note that
SFHx is not only the best-fit model with the observational
mass-radius relation of cold NSs [52], but also agrees much
better than TM1 with respect to nuclear and neutron matter
constraints on the EOS [53]. Both EOSs are compatible
with the 2 M⊙ NS mass measurements [54,55].
Hydrodynamic evolutions are rather common between

SFHx and TM1, which is characterized by the prompt
convection phase shortly after bounce (Tpb ≲ 20 ms with
Tpb representing the postbounce time), then the linear (or
quiescent) phase (20≲ Tpb ≲ 100 ms), which is followed
by the nonlinear phase where the strong SASI dominates
over neutrino-driven convection in the postshock region
(100≲ Tpb ≲ 300 ms). The softer EOS (SFHx) makes the
PNS radii and the shock at the shock-stall more compact
compared to TM1. This leads to more stronger activity of
the (sloshing and spiral) SASI motion in SFHx compared to
TM1 (see [12] for more details).
Fig. 1 shows radial profiles of the rest-mass density at

three representative epochs after bounce (Tpb ¼ 48, 148,
and 248 ms) for SFHx (left panel) and TM1 (right panel),
respectively. Each timeslice corresponds to the linear phase
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(Tpb ¼ 48 ms), the early (Tpb ¼ 148 ms) and late
(Tpb ¼ 248 ms) nonlinear phase covered in the simulation,
respectively (see also Fig. 2 in [12]). The maximum density
for SFHx (left panel, ρ≳ 2 × 1014 g cm−3) is a few 10%
higher compared to TM1 (right panel). This is because
SFHx is softer than TM1 as mentioned above. In fact, Fig. 2
shows that the PNS radius (left panel) is more compact for
SFHx. Here the surface of the PNS is defined at a fiducial
rest-mass density of ρs ¼ 1010 g cm−3, which is relatively
lower in the literature (e.g., [56]), but necessary in order to
include the nascent PNS from the three-dimensional GR
models with limited simulation time after bounce. In right
panel, we plot gravitational mass of the PNS MPNS (evalu-
ated by Eq. (A1) in Appendix A) for given spherically
averaged hydro and metric datas. We shortly mention the
accuracy of MPNS which is used later in our analysis.
Although the baryon mass conservation is strictly satisfied
because of our conservative formula, the gravitational mass
is not conserved with the same accuracy in general (the
energy loss by gravitational waves is negligible for CCSNe)
in the BSSN formalism. The violation can be ∼1% in our
code [47]. It is also not straightforward to estimate the
gravitational mass of the PNS with taking into account
the non-negligible energy loss by neutrinos. Furthermorewe
first take spherically average with a simple zeroth order

spacial interpolation from three-dimensional Cartesian to
one-dimensional spherical coordinates, and afterward we
evaluate MPNS. Therefore, the gravitational mass of the
PNS can differ from its true value of the order of
∼1%ð∼0.01M⊙Þ. In Appendix A, we discuss impact of
numerical accuracy in MPNS for our results.
The left panel of Fig. 3 shows the evolution of the

“compactness” of the PNS that is defined by MPNS=RPNS
for SFHx (red line) and TM1 (blue line). As one would
imagine, the compactness of the PNS is higher for SFHx
compared to TM1 even after we consider the inaccuracy of
∼1% in MPNS. The right panel of Fig. 3 depicts the time
evolution ofMPNS as a function of RPNS. The PNS with the
softer EOS (SFHx) evolves from larger to smaller PNS
radius with bigger to smaller enclosed mass compared to
the stiffer EOS (TM1). Depending on the stiffness of
the EOSs, one can see that the evolution track in the
MPNS − RPNS plane differs significantly.
To extract the metric from the background models in a

suitable form, we perform the following coordinate trans-
formation. In the background models obtained by numeri-
cal relativity simulation (e.g., [12]), the line element is
given as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

FIG. 1. (Spherically-averaged) radial profiles of the rest-mass density at 48, 148, and 248 ms after core bounce. The left and right panel
corresponds to SFHx and TM1, respectively.

FIG. 2. Time evolution of the PNS radius (left panel) and its gravitational mass (right panel) as a function of the postbounce time. The
circles and diamonds corresponds to SFHx and TM1, respectively. The surface of the PNS is defined at a fiducial rest-mass density of
ρs ¼ 1010 g cm−3.
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where α, βi, and γij are the lapse, shift vector, and
three metric, respectively. If one assumes that the hydro-
dynamical background is static and spherically symmetric,
the spacetime in the isotropic coordinates can also be
written as

ds2 ¼ −
ð1 − M

2r̂Þ2
ð1þ M

2r̂Þ2
dt2

þ
�
1þM

2r̂

�
4

ðdr̂2 þ r̂2dθ2 þ r̂2sin2θdϕ2Þ; ð2Þ

where r̂ and M denote the isotropic radius r̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the enclosed gravitational mass,

respectively. From Eqs. (1) and (2), one can easily check
the validity of our static and spherically symmetric back-
ground assumption by comparing γr̂ r̂ and ð1þM=2r̂Þ4
(see Appendix A for detail).
Next, we perform coordinate transformation from the

isotropic, i.e., Eqs. (1) or (2), to the following spherically
symmetric spacetime,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where Φ and Λ are functions of only r. This metric is
similar to the Schwarzschild metric and we apply the well-
known conversion relation r ¼ r̂ð1þM=2r̂Þ2. In addition,
Λ is associated with the mass functionM in such a way that
e−2Λ ¼ 1–2M=r. With this metric form, the four-velocity
of fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ.

III. PERTURBATION EQUATIONS FOR
AXIAL w-MODE GRAVITATIONAL WAVES

On the PNS models mentioned in the previous section,
we examine the oscillations and their spectra with the linear
perturbation approach. In particular, when one focuses on
axial type oscillations, the metric perturbation, hμν, with the
Regge-Wheeler gauge can be decomposed as

hμν ¼
X∞
l¼2

Xl
m¼−l

0
BBBB@

0 0 −h0;lmsin−1θ∂ϕ h0;lm sin θ∂θ

� 0 −h1;lmsin−1θ∂ϕ h1;lm sin θ∂θ

� � 0 0

� � 0 0

1
CCCCA

× Ylm; ð4Þ

where Ylm is the spherical harmonics with the angular
indexes l and m, noting that h0;lm and h1;lm are functions
of t and r [22]. Additionally, the perturbation of the four-
velocity is given by

δuμ ¼
X∞
l¼2

Xl
m¼−l

�
0; 0;−

δulm
r2 sin θ

∂ϕYlm;
δulm
r2 sin θ

∂θYlm

�
;

ð5Þ
while the perturbations of pressure and energy density
should be zero for axial type oscillations.
The perturbation equation governing the axial type of

GWs on the spherically symmetric background can be
expressed as a single wave equation [57,58], such as

−
∂2Xlm

∂t2 þ∂2Xlm

∂r2� −e2Φ
�
lðlþ1Þ

r2
−
6m
r3

þ4πðε−pÞ
�
Xlm

¼ 0; ð6Þ

where Xlm is related to the metric perturbation, h1;lm, via
rXlm ¼ eΦ−Λh1;lm, while r� is the tortoise coordinate
defined as r�¼rþ2Mlnðr=2M−1Þ. That is, ∂r¼eΛ−Φ∂r� .
The remaining variables, h0;lm and δulm, can be computed
with h1;lm from the relations ∂th0;lm¼ eΦ−ΛXlmþ r∂r�Xlm

and δulm ¼ −e−Φh0;lm. We remark that Eq. (6) outside the
star reduces to the well-known Regge-Wheeler equation.
Hereafter, we omit the index of ðl; mÞ for simplicity.
In fact, by solving this system one can obtain the specific

oscillation spectra of GWs, i.e., the so-called w modes
[44,45]. Replacing Xlm in Eq. (6) with Xlmðt; rÞ ¼
XðrÞ expðiωtÞ, one gets the perturbation equation with
respect to the eigenvalue ω,

FIG. 3. Left: Same as Fig. 2, but for the time evolution of the stellar compactness after bounce. Right: Sequences of the masses and
radii of PNSs for SFHx and TM1. Note that the points at the left (smaller PNS radius) correspond to late postbounce phase, whereas the
points at the right correspond to early phase (larger PNS radius).
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X00 þ ðΦ0 − Λ0ÞX0

þ e2Λ
�
ω2e−2Φ −

lðlþ 1Þ
r2

þ 6m
r3

− 4πðε − pÞ
�
X ¼ 0:

ð7Þ

By imposing appropriate boundary conditions, the problem
to solve becomes the eigenvalue problem. The boundary
conditions are the regularity condition at the stellar center
and the outgoing wave condition at spatial infinity.
The eigenvalue ω becomes a complex number, because

GWs carry out the oscillation energy, where the real and
imaginary parts of ω correspond to the oscillation fre-
quency (f ¼ ReðωÞ=2π) and damping rate (1=τ ¼ ImðωÞ),
respectively, where τ corresponds to the damping time of
each mode. To determine such a complex frequency, we
adopt the continuous fractional method proposed by
Leaver [59].

IV. ASTEROSEISMOLOGY WITH w MODES

The spacetime modes (w modes) have two families, i.e.,
wII and “ordinary” w modes [44,45]. As shown in
Appendix B, for cold NSs, a few wII modes are excited,
whose damping rate [ImðωÞ] is larger than its oscillation
frequency (ReðωÞ). On the other hand, infinite number of w
modes can exist, which are referred to as w1; w2; � � � ; wn

modes in order from the lowest oscillation frequency. So, in
the similar way to cold NSs, we identify the spacetime
modes with ReðωÞ larger than ImðωÞ as the “ordinary” w
modes for PNSs. Hereafter, the “ordinary” w modes are
called just as the w modes.
In Fig. 4, we show the frequency and damping rate of the

axial spacetime modes for the PNS models at the two
postbounce times of Tpb ¼ 108 ms (circles) and 248 ms
(diamonds), where the left and right panels correspond to
the results with SFHx and TM1 (EOS). In this figure, the
open marks denote the wII modes, while the solid marks
denote the w modes. Thus, the leftmost solid marks
correspond to the w1 mode (fundamental w mode) for
each PNS model. From this figure, one can observe that the
damping rate of wn mode is almost constant independently
of the index n, which is different behavior from the case of
cold NSs as shown in Fig. 10. In fact, the damping rate of
wn modes increase with the index n for cold NSs. With
respect to the w1 mode (Fig. 5), we show the time evolution
of the frequency (fw1

) and damping time (τw1
) as a function

of postbounce time for SFHx and TM1, respectively. We
remark that the damping time is the time with which the
GW amplitude reduces by 1=e. In the early phase of
w1-mode oscillations of PNSs, the frequency is only a
few kHz, which is significantly smaller than that for cold
NSs, while the damping time is around 0.1 ms, which is
much larger than that for cold NSs. This is good news from

FIG. 4. Frequency and damping rate of the axial spacetime modes for PNSs. The left and right panels correspond to the results for
SFHx and TM1 EOSs, respectively, where the circles and diamonds are shown for the PNS models at 108 and 248 ms after core bounce.
The open and solid marks correspond to the wII and “ordinary” w modes.

FIG. 5. Evolutions of frequency ðfw1
Þ and damping time ðτw1

Þ for the w1 mode. The circles and diamonds correspond to SFHx and
TM1, respectively.

PROBING MASS-RADIUS RELATION OF PROTONEUTRON … PHYSICAL REVIEW D 96, 063005 (2017)

063005-5



the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

�
20.92 − 9.14

�
M

1.4 M⊙

��
R

10 km

�
−1
�

×

�
R

10 km

�
−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635

�
M

1.4 M⊙

�
1=2

�
R

10 km

�
−3=2

:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

�
27.99 − 12.02

�
MPNS

1.4 M⊙

��
RPNS

10 km

�
−1
�

×

�
RPNS

10 km

�
−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

�
MPNS

1.4 M⊙

�
1=2

�
RPNS

10 km

�
−3=2

;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

�
MPNS

1.4 M⊙

�
1=2

�
RPNS

10 km

�
−3=2

;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS − RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼ R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23

�
Ew1

10−10 M⊙

�
1=2

�
4 kHz
fw1

�
1=2

�
10 kpc
D

�
;

ð13Þ
where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the

gravitational waves from PNS (Eðw1Þ
T ), the energy for each

time step (Ew1
) can be estimated as Eðw1Þ

T ≈ Ew1
Tw1

=τw1
,

where Tw1
denotes the duration time of the w1 mode. In this

paper, we simply assume that Tw1
¼ 250 ms and

τw1
¼ 0.1 ms. Since the total energy of the w1 mode in

gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down

triangles correspond to the results with Eðw1Þ
T ¼ 10−4 M⊙,

10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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five cases, i.e., 10−4 M⊙, 10−5 M⊙, 10−6 M⊙, 10−7 M⊙,
and 10−8 M⊙, as the values of Eðw1Þ

T . Then, the expected
effective amplitude of the w1 mode in gravitational
waves radiated from PNSs with SFHx EOS is shown in
Fig. 8 together with the sensitivity curves of KAGRA,
advanced LIGO, Einstein Telescope, and Cosmic Explorer
[4,6,60]. In this figure, the circles, squares, diamonds,
triangles, and upside-down triangles denote for the cases

withEðw1Þ
T ¼ 10−4 M⊙, 10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and

10−8 M⊙, respectively. The leftmost marks of the effective
amplitude for each mode correspond to the PNS model
at 48 ms after core bounce, and the effective amplitude
decreases with time. From this figure, the radiation energy

of Eðw1Þ
T ¼ 10−5 M⊙ seems to be marginal for the

advanced LIGO.

V. CONCLUSION

The GWs radiated from supernova explosions are one of
the most promising sources. In this paper, we considered
the GWs emitted from a PNS in the postbounce phase of
core-collapse supernovae. In particular, we focused on the
spacetime mode, the so-called w mode. Regarding the
background model, we used results from most recent three-
dimensional GR models. Then, we calculated the complex
frequencies on such PNS models, assuming that the PNS
model on each time step is static spherically symmetry. The
real and imaginary parts of complex frequency correspond
to the oscillation frequency and the damping rate.
We have found that the damping rate of wn modes for

PNSs is almost independent from the index n, although that
for cold NSs increases with n. Moreover, in the similar way
to the case for cold NSs, we found that the w1-mode
frequency multiplied by the PNS radius can be expressed as
a linear function of the compactness of PNSs independently
of EOSs. The w1-mode frequency of PNSs just after the
core-bounce is typically around a few kHz, which might be
better from the observational point of view. Using such a
universal relation for w1-mode frequency together with
another universal relation for the f mode, where the

frequency can be expressed as a linear function of the
square root of the average density of PNSs independently
of the progenitor models, one can get two different
properties constructed with the mass and radius of the
PNS, if one would detect simultaneously the both modes.
Therefore, one would determine the mass and radius of
PNSs in principle on each time step, which would enable us
to study the finite-temperature EOS that predominantly
determines the PNS evolution.
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APPENDIX A: VALIDITY OF THE STATIC AND
SPHERICALLY SYMMETRIC ASSUMPTION FOR

OUR THREE-DIMENSIONAL MODELS

From Eqs. (1) and (2), one can check the validity of our
static and spherically symmetric assumption by comparing
γr̂ r̂ and ð1þM=2r̂Þ4. In Fig. 9, we plot the gravitational
massM (cross) and the effective mass 2r̂ðγr̂ r̂1=4 − 1Þ (solid
line) at representative post bounce times Tpb ¼ 48, 148,
and 248 ms. The inner mini panel is a magnified view
where the solid lines and crosses deviate the most. For M,
we simply adopt the following ADM mass

M¼
Z

dx3
�
ρHψ

5þ ψ5

16π

�
~Aij

~Aij−
2

3
K2−γij ~Rij

��
; ðA1Þ

where ρH ¼ ρhW2 − P, with ρ, h, W, and P being the rest
mass density, enthalpy, Lorentz factor, and pressure,
respectively, and ψ , ~Aij, K, and ~Rij are the conformal

FIG. 9. The effective (solid) and actual (cross) gravitational mass as a function of the isotropic radius r̂ at 48, 148, and 248 msec after
core bounce. The left and right panels correspond to the results with SFHx and TM1 EOSs, respectively.
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factor, tracefree part of the extrinsic curvature, trace of the
extrinsic curvature, and the Ricci tensor with respect to
~γij ¼ γijψ

−4, respectively. Because of the highly convective
motion within the shock radius r̂≲ 100 km, the effective
gravitational mass calculated from γr̂ r̂ does not match with
M. The maximum deviation however is a few percent and
we consider that it is sufficient to describe the background
metric with M instead of using simply γr̂ r̂, since the
effective gravitational mass at r̂ ∼ 30–50 km (solid line
in the mini panel) has a negative gradient. In any way, we
confirm that the resultant w-mode frequencies and damping
rates with the actual mass we adopted in text are almost the
same as those with the effective mass determined from γr̂ r̂.
For example, the difference in the w1-mode frequency at
248 ms between the results with actual and effective masses
is only 0.23% for SFHx and 0.14% for TM1, while the
difference in the w1-mode damping rate at 248 ms is only
0.98% for SFHx and 0.91% for TM1.

APPENDIX B: w MODE FOR COLD
NEUTRON STARS

For reference, in Fig. 10 we show the complex frequen-
cies of w-mode oscillations from a cold neutron star with

1.5 M⊙ constructed with the Shen EOS [61]. In this figure,
the open circle corresponds to the wII mode, while the
solid circles are the wmodes. The wmodes are called as w1,
w2, � � �, wn-modes from the lower frequencies. For the case
of cold NSs, it is known that the damping rate of the w
mode increases as the mode becomes higher-order oscil-
lations [44,45], as shown in this figure.
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