539 research outputs found

    Nuclear moments for the neutrinoless double beta decay II

    Get PDF
    The recently developed formalism for the evaluation of nuclear form factors in neutrinoless double beta decay is applied to 48Ca^{48}Ca, 76Ge^{76}Ge, 82Se^{82}Se, 100Mo^{100}Mo, 128Te^{128}Te and 130Te^{130}Te nuclei. Explicit analytical expressions that follows from this theoretical development, in the single mode model for the decay of 48Ca^{48}Ca, have been worked out. They are useful both for testing the full numerical calculations, and for analytically checking the consistency with other formalisms. Large configuration space calculations are compared with previous studies, where alternative formulations were used. Yet, besides using the G-matrix as residual interaction, we here use a simple δ\delta-force. Attention is paid to the connected effects of the short range nuclear correlations and the finite nucleon size. Constraints on lepton number violating terms in the weak Hamiltonian (effective neutrino Majorana mass and effective right-handed current coupling strengths) are deduced.Comment: 18 pages, latex, minor changes, to appear in Nucl. Phys.

    Non-collapsing renormalized QRPA with proton-neutron pairing for neutrinoless double beta decay

    Get PDF
    Using the renormalized quasiparticle random phase approximation (RQRPA), we calculate the light neutrino mass mediated mode of neutrinoless double beta decay of Ge76, Mo100, Te128 and Te130. Our results indicate that the simple quasiboson approximation is not good enough to study the neutrinoless double beta decay, because its solutions collapse for physical values of g_pp. We find that extension of the Hilbert space and inclusion of the Pauli Principle in the QRPA with proton-neutron pairing, allows us to extend our calculations beyond the point of collapse, for physical values of the nuclear force strength. As a consequence one might be able to extract more accurate values on the effective neutrino mass by using the best available experimental limits on the half-life of neutrinoless double beta decay.Comment: 15 pages, RevTex, 2 Postscript figures, to appear in Phys. Lett.

    Exact evaluation of the nuclear form factor for new kinds of majoron emission in neutrinoless double beta decay

    Get PDF
    We have developed a formalism, based on the Fourier-Bessel expansion, that facilitates the evaluation of matrix elements involving nucleon recoil operators, such as appear in serveral exotic forms of neutrinoless double beta decay (ββ0ν\beta\beta_{0\nu}). The method is illustrated by applying it to the ``charged'' majoron model, which is one of the few that can hope to produce an observable effect. From our numerical computations within the QRPA performed for 76Ge^{76}Ge, 82Se^{82}Se, 100Mo^{100} Mo, 128Te^{128}Te and 150Nd^{150}Nd nuclei, we test the validity of approximations made in earlier work to simplify the new matrix elements, showing that they are accurate to within 15%. Our new method is also suitable for computing other previously unevaluated ββ0ν\beta\beta_{0\nu} nuclear matrix elements.Comment: 11pp., latex, fixed minor typographical error

    Conditions for detecting CP violation via neutrinoless double beta decay

    Full text link
    Neutrinoless double beta decay data together with information on the absolute neutrino masses obtained from the future KATRIN experiment and/or astrophysical measurements give a chance to find CP violation in the lepton sector with Majorana neutrinos. We derive and discuss necessary conditions which make discovery of such CP violation possible for the future neutrino oscillation and mass measurements data.Comment: 15 pages, 4 figures, RevTe

    The Pauli principle, QRPA and the two-neutrino double beta decay

    Full text link
    We examine the violation of the Pauli exclusion principle in the Quasiparticle Random Phase Approximation (QRPA) calculation of the two-neutrino double beta decay matrix elements, which has its origin in the quasi-boson approximation. For that purpose we propose a new renormalized QRPA with proton-neutron pairing method (full-RQRPA) for nuclear structure studies, which includes ground state correlation beyond the QRPA. This is achieved by using of renormalized quasi-boson approximation, in which the Pauli exclusion principle is taken into account more carefully. The full-RQRPA has been applied to two-neutrino double beta decay of 76Ge^{76}Ge, 82Se^{82}Se, 128Te^{128}Te and 130Te^{130}Te. The nuclear matrix elements have been found significantly less sensitive to the increasing strength of particle-particle interaction in the physically interesting region in comparison with QRPA results. The strong differences between the results of both methods indicate that the Pauli exclusion principle plays an important role in the evaluation of the double beta decay. The inclusion of the Pauli principle removes the difficulties with the strong dependence on the particle-particle strength gppg_{pp} in the QRPA on the two-neutrino double beta decay.Comment: Accepted for publication in Nucl. Phys. A, 22 pages, including 5 figures, LaTeX (using REVTeX and epsfig-style

    A large Hilbert space QRPA and RQRPA calculation of neutrinoless double beta decay

    Get PDF
    A large Hilbert space is used for the calculation of the nuclear matrix elements governing the light neutrino mass mediated mode of neutrinoless double beta decay of Ge76, Mo100, Cd116, Te128 and Xe136 within the proton-neutron quasiparticle random phase approximation (pn-QRPA) and the renormalized QRPA with proton-neutron pairing (full-RQRPA) methods. We have found that the nuclear matrix elements obtained with the standard pn-QRPA for several nuclear transitions are extremely sensitive to the renormalization of the particle-particle component of the residual interaction of the nuclear hamiltonian. Therefore the standard pn-QRPA does not guarantee the necessary accuracy to allow us to extract a reliable limit on the effective neutrino mass. This behaviour, already known from the calculation of the two-neutrino double beta decay matrix elements, manifests itself in the neutrinoless double-beta decay but only if a large model space is used. The full-RQRPA, which takes into account proton-neutron pairing and considers the Pauli principle in an approximate way, offers a stable solution in the physically acceptable region of the particle-particle strength. In this way more accurate values on the effective neutrino mass have been deduced from the experimental lower limits of the half-lifes of neutrinoless double beta decay.Comment: 19 pages, RevTex, 1 Postscript figur

    Double Beta Decay in pn-QRPA Model with Isospin and SU(4) Symmetry Constraints

    Full text link
    The transition matrix elements for the 0+0+0^{+}\to 0^{+} double beta decays are calculated for 48Ca^{48}Ca, 76Ge^{76}Ge , 82Se^{82}Se, 100Mo^{100}Mo, 128Te^{128}Te and 130Te^{130}Te nuclei, using a δ{\delta}-interaction. As a guide, to fix the particle-particle interaction strengths, we exploit the fact that the missing symmetries of the mean field approximation are restored in the random phase approximation by the residual interaction. Thus, the T=1, S=0 and T=0, S=1 coupling strengths have been estimated by invoking the partial restoration of the isospin and Wigner SU(4) symmetries, respectively. When this recipe is strictly applied, the calculation is consistent with the experimental limit for the 2ν2\nu lifetime of 48Ca^{48}Ca and it also correctly reproduces the 2ν2\nu lifetime of 82Se^{82}Se. In this way, however, the two-neutrino matrix elements for the remaining nuclei are either underestimated (for 76Ge^{76}Ge and 100Mo^{100}Mo) or overestimated (for 128Te^{128}Te and 130Te^{130}Te) approximately by a factor of 3. With a comparatively small variation (<10<10%) of the spin-triplet parameter, near the value suggested by the SU(4) symmetry, it is possible to reproduce the measured T1/22νT_{1/2}^{2\nu} in all the cases. The upper limit for the effective neutrino mass, as obtained from the theoretical estimates of 0ν0\nu matrix elements, is 1\cong 1 eV. The dependence of the nuclear matrix elements on the size of the configuration space has been also analyzed.Comment: 25 pages (LaTex) and 3 figures upon request, to be published in Nucl. Phys.

    Shell Model Study of the Double Beta Decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe

    Get PDF
    The lifetimes for the double beta decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe are calculated using very large shell model spaces. The two neutrino matrix elements obtained are in good agreement with the present experimental data. For <1<1 eV we predict the following upper bounds to the half-lives for the neutrinoless mode: T1/2(0ν)(Ge)>1.851025yr.T^{(0\nu)}_{1/2}(Ge) > 1.85\,10^{25} yr., T1/2(0ν)(Se)>2.361024yr.T^{(0\nu)}_{1/2}(Se) > 2.36\,10^{24} yr. and T1/2(0ν)(Xe)>1.211025yrT^{(0\nu)}_{1/2}(Xe) > 1.21\,10^{25} yr. These results are the first from a new generation of Shell Model calculations reaching O(108^{8}) dimensions

    Neutrino-less Double Electron Capture - a tool to research for Majorana neutrinos

    Full text link
    The possibility to observe the neutrino-less double β \beta decay and thus to prove the Majorana nature of neutrino as well as provide a sensitive measure of its mass is a major challenge of to-day's neutrino physics. As an attractive alternative we propose to study the inverse process, the radiative neutrino-less double electron capture 0ν2EC0 \nu 2EC. The associated monoenergetic photon provides a convenient experimental signature. Other advantages include the favourable ratio of the 0ν2EC0 \nu 2EC to the competing 2ν2EC2\nu 2EC capture rates and, very importantly, the existence of coincidence trigger to suppress the random background. These advantages partly offset the expected longer lifetimes. Rates for the 0γ2EC0\gamma 2EC process are calculated. High Z atoms are strongly favoured. A resonance enhancement of the capture rates is predicted at energy release comparable to the 2P1S2P-1S atomic level difference. The resonance conditions are likely to be met for decays to excited states in final nuclei. Candidates for such studies are considered. The experimental feasibility is estimated and found highly encouraging.Comment: New figure added, table updated, physical background discusse
    corecore