80 research outputs found

    In situ sensors for measurements in the global trosposphere

    Get PDF
    Current techniques available for the in situ measurement of ambient trace gas species, particulate composition, and particulate size distribution are reviewed. The operational specifications of the various techniques are described. Most of the techniques described are those that have been used in airborne applications or show promise of being adaptable to airborne applications. Some of the instruments described are specialty items that are not commercially-available. In situ measurement techniques for several meteorological parameters important in the study of the distribution and transport of ambient air pollutants are discussed. Some remote measurement techniques for meteorological parameters are also discussed. State-of-the-art measurement capabilities are compared with a list of capabilities and specifications desired by NASA for ambient measurements in the global troposphere

    Somatosensory Information Processing in the Aging Population

    Get PDF
    While it is well known that skin physiology ā€“ and consequently sensitivity to peripheral stimuli ā€“ degrades with age, what is less appreciated is that centrally mediated mechanisms allow for maintenance of the same degree of functionality in processing these peripheral inputs and interacting with the external environment. In order to demonstrate this concept, we obtained observations of processing speed, sensitivity (thresholds), discriminative capacity, and adaptation metrics on subjects ranging in age from 18 to 70. The results indicate that although reaction speed and sensory thresholds change with age, discriminative capacity, and adaptation metrics do not. The significance of these findings is that similar metrics of adaptation have been demonstrated to change significantly when the central nervous system (CNS) is compromised. Such compromise has been demonstrated in subject populations with autism, chronic pain, acute NMDA receptor block, concussion, and with tactileā€“thermal interactions. If the metric of adaptation parallels cortical plasticity, the results of the current study suggest that the CNS in the aging population is still capable of plastic changes, and this cortical plasticity could be the mechanism that compensates for the degradations that are known to naturally occur with age. Thus, these quantitative measures ā€“ since they can be obtained efficiently and objectively, and appear to deviate from normative values significantly with systemic cortical alterations ā€“ could be useful indicators of cerebral cortical health

    Neurosensory Assessments of Concussion

    Get PDF
    ABSTRACT The purpose of this research was to determine if cortical metricsā€”a unique set of sensory-based assessment toolsā€”could be used to characterize and differentiate concussed individuals from nonconcussed individuals. Cortical metrics take advantage of the somatotopic relationship between skin and cortex, and the protocols are designed to evoke interactions between adjacent cortical regions to investigate fundamental mechanisms that mediate corticalā€“cortical interactions. Student athletes, aged 18 to 22 years, were recruited into the study through an athletic training center that made determinations of postconcussion return-to-play status. Sensory-based performance tasks utilizing vibrotactile stimuli applied to tips of the index and middle fingers were administered to test an individual's amplitude discrimination, temporal order judgment, and duration discrimination capacity in the presence and absence of illusion-inducing conditioning stimuli. Comparison of the performances in the presence and abse..

    Determinants of patchy metabolic labeling in the somatosensory cortex of cats: a possible role for intrinsic inhibitory circuitry

    Get PDF
    Despite repeated experimental demonstration that somatic stimulation leads to an intermittent, "column-like" pattern of 2-deoxyglucose (2DG) label in the somatosensory cortex, the functional significance of this pattern remains uncertain. A number of recent studies have suggested that the putative inhibitory neurotransmitter GABA may play an influential role in the cortical processing of sensory information. To test the possibility that GABA-mediated inhibitory processes might participate in the formation of the 2DG patches, the 2DG pattern obtained under "normal" experimental conditions was compared with the pattern observed when cortical inhibition was modified by topical application of the GABA antagonist, bicuculline methiodide (BIC). Under "normal" experimental conditions, we found that somatic stimulation led to an intermittent, patch like distribution of 2DG uptake in cat somatosensory cortex, which exhibited consistent features in animals studied using the same stimulus and experimental condition. Reconstructions of the stimulus-evoked activity patterns revealed that the label was confined to territories known to receive input from the stimulated body region and was organized into elongated strips. Topical application of BIC to the somatosensory cortex dramatically altered the dimension of the metabolic patches, which were often embedded in a field of elevated 2DG uptake. In BIC-treated hemispheres the average width of 2DG patches was 1266 microns, whereas the average width of patches in the opposite untreated hemisphere (elicited by identical stimuli) was 713 microns. Unfolded maps of the labeling pattern revealed that in the BIC-treated hemispheres adjacent "strips" of 2DG label tended to fuse, leading to a less intermittent distribution than that observed in the untreated hemispheres. An important role for GABA in the formation of the normal cortical response to somatic stimulation is suggested

    Vibrotactile adaptation fails to enhance spatial localization in adults with autism

    Get PDF
    A recent study (Tannan et al., 2006) showed that pre-exposure of a skin region to a 5 sec 25 Hz flutter stimulus (ā€œadaptationā€) results in an approximately 2-fold improvement in the ability of neurologically healthy human adults to localize mechanical stimulation delivered to the same skin region that received the adapting stimulation. Tannan et al. (Tannan et al., 2006) proposed that tactile spatial discriminative performance is improved following adaptation because adaptation is accompanied by an increase in the spatial contrast in the response of contralateral primary somatosensory cortex (SI) to mechanical skin stimulation ā€“ an effect identified in previous imaging studies of SI cortex in anesthetized non-human primates (e.g., Simons et al., 2005; Tommerdahl et al., 2002; Whitsel et al., 1989)

    Nociceptive Afferent Activity Alters the SI RA Neuron Response to Mechanical Skin Stimulation

    Get PDF
    Procedures that reliably evoke cutaneous pain in humans (i.e., 5ā€“7 s skin contact with a 47ā€“51 Ā°C probe, intradermal algogen injection) are shown to decrease the mean spike firing rate (MFR) and degree to which the rapidly adapting (RA) neurons in areas 3b/1 of squirrel monkey primary somatosensory cortex (SI) entrain to a 25-Hz stimulus to the receptive field center (RFcenter) when stimulus amplitude is ā€œnear-thresholdā€ (i.e., 10ā€“50 Ī¼m). In contrast, RA neuron MFR and entrainment are either unaffected or enhanced by 47ā€“51 Ā°C contact or intradermal algogen injection when the amplitude of 25-Hz stimulation is 100ā€“200 Ī¼m (suprathreshold). The results are attributed to an ā€œactivity dependenceā€ of Ī³-aminobutyric acid (GABA) action on the GABAA receptors of RA neurons. The nociceptive afferent drive triggered by skin contact with a 47ā€“51 Ā°C probe or intradermal algogen is proposed to activate nociresponsive neurons in area 3a which, via corticocortical connections, leads to the release of GABA in areas 3b/1. It is hypothesized that GABA is hyperpolarizing/inhibitory and suppresses stimulus-evoked RA neuron MFR and entrainment whenever RA neuron activity is low (as when the RFcenter stimulus is weak/near-threshold) but is depolarizing/excitatory and augments MFR and entrainment when RA neuron activity is high (when the stimulus is strong/suprathreshold)

    A novel device for the study of somatosensory information processing

    Get PDF
    Current methods for applying multi-site vibratory stimuli to the skin typically involve the use of multiple, individual vibrotactile stimulators. Limitations of such an arrangement include difficulty with both positioning the stimuli as well as ensuring that stimuli are delivered in a synchronized and deliberate manner. Previously, we reported a two-site tactile stimulator that was developed in order to solve these problems (Tannan et al., 2007a). Due to both the success of that novel stimulator and the limitations that were inherent in that device, we designed and fabricated a four-site stimulator that provides a number of advantages over the previous version. First, the device can stimulate four independent skin sites and is primarily designed for stimulating the digit tips. Second, the positioning of the probe tips has been re-designed to provide better ergonomic hand placement. Third, the device is much more portable than the previously-reported stimulator. Fourth, the stimulator head has a much smaller footprint on the table or surface where it resides. To demonstrate the capacity of the device for delivering tactile stimulation at four independent sites, a finger agnosia protocol, in the presence and absence of conditioning stimuli, was conducted on seventeen healthy control subjects. The study demonstrated that with increasing amplitudes of vibrotactile conditioning stimuli concurrent with the agnosia test, inaccuracies of digit identification increased, particularly at digits D3 and D4. The results are consistent with prior studies that implicated synchronization of adjacent and near-adjacent cortical ensembles with conditioning stimuli in impacting TOJ performance (Tommerdahl et al., 2007)

    Altered Central Sensitization in Subgroups of Women With Vulvodynia

    Get PDF
    To investigate the clinical correlates of central nervous system (CNS) alterations among women with vulvodynia. Altered central sensitization has been linked to dysfunction in CNS inhibitory pathways (e.g. GABAergic), and metrics of sensory adaptation, a centrally mediated process that is sensitive to this dysfunction, could potentially be used to identify women at risk of treatment failure using conventional approaches
    • ā€¦
    corecore